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Abstract

Most existing metric learning methods focus on
learning a similarity or distance measure relying
on similar and dissimilar relations between sam-
ple pairs. However, pairs of samples cannot be sim-
ply identified as similar or dissimilar in many real-
world applications, e.g., multi-label learning, label
distribution learning and tasks with continuous de-
cision values. To this end, in this paper we propose
anovel relation alignment metric learning (RAML)
formulation to handle the metric learning problem
in those scenarios. Since the relation of two sam-
ples can be measured by the difference degree of
the decision values, motivated by the consistency
of the sample relations in the feature space and de-
cision space, our proposed RAML utilizes the sam-
ple relations in the decision space to guide the met-
ric learning in the feature space. In this way, our
RAML method formulates metric learning as a k-
ernel regression problem, which can be efficiently
optimized by the standard regression solvers. We
carry out several experiments on the single-label
classification, multi-label classification, and label
distribution learning tasks, to demonstrate that our
method achieves favorable performance against the
state-of-the-art methods.

1 Introduction

In many computer vision and pattern recognition tasks, e.g.,
face recognition [Guillaumin et al., 2009], image classifica-
tion [Mensink et al., 2012], and person re-identification [Liao
et al., 2015], it is crucial to learn a discriminative distance
metric to measure the similarity between pairs of samples. In-
tuitively, metric learning aims to learn a discriminative simi-
larity or dissimilarity metric by pushing the dissimilar sam-
ples away and pulling the similar samples together. Typi-
cal distance metrics include Euclidean distance, cosine dis-
tance, and Mahalanobis distance. Most existing metric learn-
ing methods focus on learning a discriminative Mahalanobis
distance. Beyond Mahalanobis distance, generalized distance
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(a) Single label classification (b) Multi-label label classification (c) Label distribution learning

Figure 1: Examples of sample pairs in different learning tasks. (a)
In single-label classification, two images of dogs construct a similar
pair while one image of wolf and the other image of Husky construct
a dissimilar pair. (b) For multi-label classification, one scene image
(tree, park, child, stroke, lake, girl) and the other scene image (tree,
flower, house, park, exit, girl) are hard to be identified as similar or
dissimilar. (c) For label distribution learning, the labels of two face
images are label distributions rather than discrete labels. Two face
images are difficult to be identified as similar or dissimilar as well.

metric learning methods are presented by learning high-order
discriminant functions [Li et al., 2012].

According to the availability of the label information, met-
ric learning can be partitioned into three categories, i.e., the
unsupervised, semi-supervised and supervised methods. To
deal with the heterogeneous data, multi-modal [McFee and
Lanckriet, 2011] and cross-modal [Wang et al., 2016] metric
learning algorithms are developed. Because of the diversity
of the feature space, linear, kernel and tensor distance metrics
are learned for different data structures. Different from shal-
low metric learning, deep learning based methods learn the
feature and metric jointly and achieve superior performance
[Oh Song et al., 2016].

One of the key steps in existing metric learning methods is
to generate doublet [Davis er al., 2007], triplet [Weinberger
and Saul, 2009] or even quadruplet [Law et al., 2013] con-
straints using the label information. Doublet constraints are
the most commonly used in metric learning methods. Simi-
lar and dissimilar sample pairs are generated in the k-nearest
neighbors or e-neighborhood by measuring whether two sam-
ples belong to the same class. In some applications, e.g.,
weakly supervised learning [Mu et al., 2010] or social net-
works [Shaw ef al., 2011], sample pairs are generated from
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connectivity information or other side information. General-
ly, there are two sets of sample pairs, i.e., one contains the
similar sample pairs and the other one contains the dissimilar
ones.

However, for some learning tasks, e.g., multi-label learning
[Zhang and Wu, 2015] and label distribution learning [Geng,
20161, relations between sample pairs cannot be simply iden-
tified as similar or dissimilar. Thus, the existing metric learn-
ing methods cannot work on the above tasks. As shown in
Figure 1(a), for single-label classification, it is very simple
to identify two images as similar or dissimilar. Figure 1(b)
shows there are two scene images that share part of the label-
s (tree, park, and girl). The problem arises that it is difficult
to classify two images into similar or dissimilar sample pair.
Figure 1(c) is an example of label distribution learning, where
decision space is modeled by label distributions rather than
discrete labels. Above discussions encourage us to propose
a generalized metric learning method, which can be flexibly
adopted to various kinds of tasks.

In machine learning community, one of the basic assump-
tions is that samples should keep with the same relations in
different spaces, especially in the feature space and label s-
pace. The principle of metric learning is to encourage samples
in the feature space to satisfy the expected relations induced
by supervised information. Manifold learning emphasizes lo-
cality preserving, which requires that the nearest neighbors
of samples should be close to each other in the projected
low-dimensional feature space [Yang et al., 2006]. For kernel
learning machines, the kernel matrix can be considered as the
similarity relation of all samples. Kernel alignment exploit-
s the similarity between kernel matrices for learning kernels
[Cortes et al., 2012] and matrix completion [Bhadra er al.,
2017]. For multi-modal learning, the sample relation in fea-
ture spaces of different modalities should be consistent with
that in the label space. For metric learning, as long as the sam-
ple relations in the decision space are modeled, the distance
metric can be learned by minimizing the difference between
sample relations in feature space and decision space.

In this paper, we propose a metric learning formulation,
namely relation alignment metric learning (RAML). Our
RAML aims to restrain that sample relations measured by
metric in the feature space tend to be consistent with those
in the decision space during learning. The contributions of
this paper are summarized as follows.

e A novel metric learning formulation is proposed to learn
distance metrics for different learning tasks, including
single-label learning, multi-label learning, and label dis-
tribution learning.

e The proposed RAML is formulated as a kernel regres-
sion model. Based on RAML formulation, two met-
ric learning methods are developed, i.e., support vector
regression metric learning and ridge regression metric
learning. Furthermore, we analyze the generalization er-
ror bound for the proposed metric learning methods.

e Experiments on single-label classification, multi-label
classification and label distribution learning tasks show
that our RAML method achieves superior performance
against the state-of-the-art methods.
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2 Problem Statement

Most existing metric learning methods focus on learning the
Mahalanobis distance. Given two samples x; and x;, where
x; € R? and d is the dimension of the feature space, the
Mahalanobis distance between the two samples x; and x;, is
defined as

dm(xi,%x;5) = (x5 — Xj)TM (xi —x;) (1)

where M € R9%4 is a positive semi-definite (PSD) matrix.
The parameter M can be predefined, i.e., the inverse of the co-
variance matrix, or learned by distance metric learning meth-
ods.

Generally, metric learning enlarges the distances between
dissimilar samples while reduces the distances between sim-
ilar ones. Two samples with the same label form a positive
pair, and ones with the different labels form a negative pair.
In supervised learning, sample pairs are previously given in
[Guillaumin et al., 2009] or generated based on the available
label information [Weinberger and Saul, 2009]. However, in
some applications, e.g., multi-label learning, and label distri-
bution learning tasks, two samples cannot be simply classified
as positive or negative ones. Lety = [y1, ..., Yk, .-, Y] be the
label vector of x. For the traditional single-label classifica-
tion task, x can only belong to one class. If x belongs to the
k-th class, yr = 1; otherwise, y; = 0. Different from the
traditional single-label classification task, multi-label classi-
fication assumes that x can belong to multiple classes. For la-
bel distribution learning, there are two constraints for y, i.e.,
yr > 0,k = 1,2,..c,and >_;_, yr = 1. Different from
the existing metric learning methods only designed for tradi-
tional single-label classification task, we aims at designing a
novel metric learning formulation to accommodate different
learning tasks.

3 A Kernel Regression Formulation

In this section, we present a kernel regression formulation for
metric learning. Different from the existing metric learning
methods, this method can be used for various kinds of tasks.

Feature space
f(x;,x;,M,b)

Decision space
g(y.»y;)

A cR™
Sample relation matrix

EcR™
Sample relation matrix

Figure 2: The consistency of the sample relations in feature and
decision spaces. The sample relation matrix E is calculated via
g(xs,x;). Then we can use E to guide metric learning (i.e., learn-
ing of M, b) in the feature space to get a more discriminative sample
relation A.
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3.1 Relation Alignment Learning

For metric learning, doublet constraint is a kind of descrip-
tion of relationship between a pair of samples in the deci-
sion space. As shown in Figure 2, f(x;,x;, M, b) is used to
measure the sample relations in feature space while g(y;, y;)
is used to measure the sample relations in decision space.
9(yi,y;) is specially designed for different tasks. Let A €
R™*™ and E € R™*™ be the sample relation matrix in fea-
ture and decision spaces, respectively. In general, sample re-
lation in the feature space should be consistent with that in
the decision space, i.e.,

all a1 an1 €11 €i1 €enl
ailq Q4 Anj = €14 €4 €ni
A1n Qin Ann €ln €Ein Enn

where a;; and e;; represent the sample relation of x; and x;
in the feature space and decision space, respectively. Here, to
keep consistency, we require that

where g(y;,y;) is the difference degree of two samples in the
decision space. g(y;,y;) reflects the sample relation in the
decision space, and guides the learning of (M, b) in feature
space.

f(Xi,Xj,M7b) = (Xl - Xj)TM (Xl - X]) + b
=(M,T;;)+b

where (-, -) is defined as the Frobenius inner product of two

. . .. T
matrices, b is the bias item, and T;; = (x; — x;) (x; — ;)" .

Then we rewrite (2) to

9(yiryj) = (M, Ti;) +b )
Once the relation function g(y;,y;) is chosen, (4) can be
considered as a linear regression problem. Hence, the metric
learning problem is converted to solve a sample pair regres-

sion problem with the scaled second sample moment T;; of
sample pair (x;,x;) as the input.

3

3.2 Sample Pair Kernel
To formulate the sample pair regression problem in (4), we
introduce a 2-degree polynomial kernel for sample pairs. Let
z; denote the sample pair (x;1, X;2). Then the 2-degree poly-
nomial kernel is defined as

k(zi,z;) = (T, T;)

=tr ((Xil —xi2) (xi1 — xi2)" (%51 — Xj2) (%1 — XjZ)T)

- 2
= ((Xil —Xi2)" (%51 — Xﬂ))
&)
With the sample pair kernel, given a sample pair z =
(x1,X2), the regression function can be rewritten as

f(z) = Z; Bi (T, T;) +b=(M,T)+b  (6)

T = (Xl — X2) (X1 — XQ)T and Tz =
(Xil — Xig) (Xil — Xig)T. Here M = Z?:l ﬁsz M
is actually a linear combination of the scaled sample
moments of the difference between two samples in one pair.

where
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3.3 Regression Metric Learning

We aim to learn the discriminative M for Mahalanobis dis-
tance with a kernel regression formulation, then our Relation
Alignment Metric Learning (RAML) can be formulated as

II&;IH Ar(M) + Z;l [(M, 2, g(z:)) %)

where (M) is the regularization item imposed on M, A is
a positive constant and {(M, z;, g(2z;)) is the regression loss
function. The parameter M is learned using (7) for enhancing
the consistency of the sample relation in the feature space and
decision space. The combinations of different regularization
on M and loss functions will lead to different metric learning
models. In this paper, we investigate two widely used regres-
sion models, i.e., support vector regression (SVR) [Drucker
et al., 1997] and ridge regression [Gu et al., 2016].

4 Support Vector Regression Metric Learning

We first extend our RAML formulation (7) to develop a SVR-
like distance metric method:

i Ar(M) + p(€,€7)

{ 9(z;) — (M, T;) +b) <e+¢ (8)
st. ¢ ((M,T;) +b) —g(z) <e+&F
;(751' Z 0

where &; and £ are slack variables, and p(&,£&*) is the mar-
gin loss item. If we adopt the Frobenius norm to regularize
M and e-sensitive loss function, then this is a standard SVR
model. We can also choose other regularizer and loss func-
tions, e.g., sparse regularizer, the Laplacian loss function or
the Huberis loss function. As there are a lot of large-scale
and efficient SVR solvers, we tend to develop a SVR-like
model. Additionally, the variants of SVR have been well in-
vestigated, including semi-supervised SVR and multi-kernel
SVR. Therefore, the proposed model can be used for semi-
supervised metric learning, multi-modal metric learning and
other specific learning tasks.

In this section, we will discuss how to learn the distance
metric via support vector regression. By using Frobenius nor-
m regularization for (M) and e-sensitive loss function for
p(&,£"), the metric learning problem in (8) can be formulat-
ed as:

min L (|M|[7 + A0 (& + &)

M,§,6
{ g(zi) = (M, T;) +b) < e+ 9)
sit.q ((M,Ti) +0b) —g(z:) <e+&
?751‘ Z 0

where HMH% is the Frobenius norm of M, and ) is a trade-off
constant. By using the Lagrange multipliers, we have

5 IMIE + A (& +€)-
Zﬁ 1 Qi (e+& —g(zi) + (M, T;) + b)—
dim1 €+ & +g(zi) — (M, Ty) —b)—
Doy (& + &)
(10)
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Algorithm 1 The algorithms of our proposed RAML-SVR
and RAML-KRR
Input:
Training data X € RIXm wwhere d and m are the num-
bers of feature dimension and samples, respectively.
1: Generate sample pairs (X;1, X;2),i = 1,2, ..., n.
2: Compute sample relation g(x;1,X;2),i = 1,2, ..., n.
3: RAML-SVR: Solve (9) by SVR solvers
RAML-KRR: Solve (17) by (20)
RAML-SVR:M = >"" | (a; — a}) T;.
RAML-KRR: M = >"" | 3;T;.
Output:
Distance metric matrix M

4:

All dual variables should satisfy the positivity constraints,
i.e, a;,a;,n;,n’ > 0. According to the saddle point con-
dition, the partial derivatives of L with respect to the primal
variables will be vanishing, i.e.,

oL n o
W Lio (ai—aj)=0 (11)
oL n o
=M~ Zi:l (a; —a})T; =0 (12)
oL
—A—at—pr 1
e A—a; —n; (13)

Substituting (11), (12) and (13) into (10), we get the dual op-
timization problem of (9) with

5 2 (ai—a}) (a; —a}) (Ti,Ty)

4,j=1
n

—8;(%‘ +af) + _;nlg(zi) (a; — af)

s.t. > g(z;) (a; — af) = 0,a4,a; €0, 7]
i=1

max

(14)

Similar to the solution of SVR, we can get the solution for
(14), i.e.,

M=3" (a-a)T; (15)

Then, the corresponding regression function can be rewritten

as
f2)=3"" (a;—a})(T;,T) +b (16)

For the metric learning task, M is required to be positive
semi-definite. Whereas, the solution for (14) cannot ensure
that M is a PSD matrix. We compute the singular value de-
composition of M = UAYV and only keep the positive part
of A to form a new matrix A . Finally, we obtain the PS-
D matrix M = UA_ V. The corresponding metric learning
(RAML-SVR) algorithm is summarized in Algorithm 1.

5 Ridge Regression Metric Learning

Besides support vector regression, we also incorporate kernel
ridge regression into our RAML formulation (7) for metric
learning. As M = Y | 3;T;, it is equivalent to regularize
M by regularizing 5. The metric learning problem in (7) can
be formulated as:

min}"" (flz) ~g(z)’ +r(®) A7)
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where f(z;) = >, 3 (Tj, T;) + b, and r () is the reg-
ularization item for 8 . When ls-norm regularization is im-
posed on 3, the objective function becomes

L(B) =Yy (T, M) — g (z;))” + AIBIS
=25 (L BTy Ti) — g
=3 (O BiKy — g () + M85

= |BK — g (2)|l5 + XI5l

(z;))° + A8l
(18)

By setting the partial derivatives of L with respect to the vari-
able /3 to 0, we have

agﬁszWK—g(z))K”Wﬂ 2
Then we can get
B=g(2) K" (KK” + 1) 0

Furthermore, with 3 we can compute M = > | 5, T;.
The corresponding metric learning (RAML-KRR) algorithm
is summarized in Algorithm 1.

6 Discussion

6.1 Generalization Error Analysis

Let P be a fixed (but unknown) distribution over X' x ). Let
each training point (x;,y;)eD be sampled i.i.d. from P. Met-
ric learning aims to learn a discriminative matrix M which
can preserve the sample relations in the label space. Then
metric learning can be formulated as the following stochas-
tic optimization problem:

min £(M)

E ~ o~
M>0 1M; (x,y), (X,¥)),

(x,y),%y)~P
1)

In fact, (7) minimizes a regularized empirical estimation of
(21), i.e., regularized Empirical Risk Minimization (ERM)
w.r.t. (21). Following the theoretical analysis in [Bhatia e al.,
2015], using techniques from the AUC maximization litera-
ture, the excess risk bound for the problem in (7) is given as
follows:

Theorem 1. Assume that all data points are confined to a ball
of radius R, i.e., ||x||, < R for all x € X. With probability
at least 1-0 over the sampling of the dataset D, the solution
M 1o the optimization problem (7) satisfies

L(M*)+
. E—Risk(n)
L(M) < _inf
M*eM =9 5 w12~ d 1 1
(B2 4 (0% + [MF )R, [ og 5
B (22)
where M is the minimizer of (1), v = % and M

:={M € R¥*4 : M = 0}. L is the average number of labels
active in a data point.

We can see(22) shows that the optimal solution M to (7) min-
imizes (21) with an additive approximation error. Additional-
ly, the generalization error bound is independent of the feature
dimension.
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Data S/F/C ITML LDML LMNN DSVM

GMML DML RAML-SVR  RAML-KRR

iris  150/5/3 0.9400+£0.0668 0.9633+0.0562 0.9528+0.0843 0.9400=£0.0584 0.9467+0.0689 0.9667+0.0471 0.9667+0.0423 0.9667+0.0471
wpbc 198/34/2 0.6919+0.0886 0.7629+0.0819 0.7432+0.1052 0.732940.0555 0.6968+0.0714 0.7476£0.0776 0.7632+0.0608 0.7879+0.0520
wine 178/14/3 0.9607+0.0300 0.9833+0.0268 0.9722+0.0393 0.961140.0375 0.9604+0.0379 0.9764+0.0425 0.9667+0.0468 0.9833+0.0268
sonar 208/61/2 0.8558+0.0615 0.7638+0.0903 0.846240.0705 0.8657+0.0583 0.8560£0.0749 0.8369+0.0840 0.8900+0.0591 0.8850+0.0454
glass 214/10/6 0.663640.0997 0.5740£0.1266 0.6556£0.0797 0.6258+0.1109 0.630840.1100 0.5724+0.1032 0.6735+0.1072 0.6395+0.1040
wdbc 569/31/2 0.9666+0.0263 0.9685+0.0284 0.9719+0.0223 0.956140.0355 0.9631£0.0315 0.9631+0.0193 0.9789+0.0162 0.9755+0.0237
credit 690/15/2 0.8043+0.0496 0.842240.0517 0.843640.0525 0.8013+0.0540 0.7941+0.0508 0.82614-0.0531 0.8246+0.0461 0.8479+0.0320

Table 1: Classification accuracy on UCI datasets

Data S/F/IC ITML LDML LMNN DSVM

GMML DML RAML-SVR RAML-KRR

binalpha  1404/320/36 0.63031+0.0501 0.6542+0.0317 0.6112+0.0358 0.5625+0.0322
caltech101 8641/256/101 0.5803+0.0162 0.5528+0.0157 0.5795+0.0126 0.5584+0.0159
MnistDat  3495/784/10 0.869540.0142 0.8858+0.0124 0.8721+£0.0255 0.8848+0.0194
Mpeg7  1400/6000/70 0.8214+0.0333 0.79714+0.0365 0.8253+0.0232 0.827140.0353
MSRA25 1799/256/12 0.9989+0.0168 0.9978+0.0046 0.9923+0.0397 0.9950+0.0121
news20  3970/8014/4 0.8678+0.0200 0.88161+0.0145 0.8734+0.0290 0.8594+0.0159
TDT2.20 1938/3677/20 0.958740.0358 0.95314+0.0306 0.9352+0.0197 0.9499+0.0175
uspst 2007/256/10 0.8979+0.0261 0.9084+0.0243 0.9096+0.0217 0.91254-0.0172

0.5338+0.1986 0.5063+0.0251 0.725040.0348 0.6850+0.0351
0.5500+0.0117 0.39364-0.0123 0.5855+0.0095 0.58031-0.0147
0.8589+0.0171 0.8323+0.0239 0.9019+0.0175 0.9087+0.0137
0.8429+0.0228 0.7071+0.0267 0.8450+0.0305 0.7936+0.0341
0.9956+0.0140 0.981740.0211 0.9989-+0.0023 0.9980+-0.0142
0.8647+0.0143 0.8166+0.0222 0.9025+0.0132 0.9217+0.0145
0.9437+0.0275 0.633310.0176 0.9679+0.0244 0.97621-0.0164
0.8858+0.0168 0.8030+0.0330 0.95254-0.0147 0.9447+0.0157

Table 2: Classification accuracy on image datasets

6.2 Sample Relation Function

The motivation of RAML is keeping relation consistency in
different spaces, including feature space and label space. As
the sample relations in the decision space are used to guide
the metric learning in feature space, it is important to choose
proper sample relation functions for different kinds of deci-
sion spaces. We consider three learning tasks, i.e., single label
learning, multi-label learning and label distribution learning.
Let y; and y; denote the label vector of x; and x;. The sam-
ple relation function is defined as:

9(yu yi)=llyi = y;l, (23)
where ||a||; is the /1-norm of a. For single label classifica-
tion, when ¢(y;, y;) is defined as (23), RAML degenerates to
a sample pair classification problem. For multi-label learning,
(23) reflects the difference with respect to positive classes of
two samples. For label distribution learning, there are many
metrics to evaluate the difference between two distributions.
Here, we experimentally find that (23) reflects sample differ-
ence in the decision space and achieves superior performance.
Therefore, we choose (23) for all the three learning tasks. The
choice of optimal relation functions for different tasks are stil-
1 an open problem, which will be investigated in our future
work. If we want to learn a similarity metric in feature space,
the inner product of two vectors, or other kernel functions can
be used for g(y;,y;).

6.3 Sample Pair Selection

Relation alignment learning aims to preserve the consisten-
cy of the sample relations between the feature space and the
decision space. However, we do not need to use the relations
of all sample pairs. For support vector regression, the support
vectors are mainly lying on the decision boundary. Therefore,
sample pairs are only generated in the k nearest neighbors
(default value of k is 3 for our method RAML), which is sim-
ilar to most existing metric learning algorithms. Besides, us-
ing only part of sample pairs can greatly reduce computation-
al complexity and storage burden.

3246

7 Experiments

In this section, we conduct experiments to validate the per-
formance of the proposed metric learning methods. We con-
sider three applications, including single-label classification,
multi-label classification and label distribution learning. The
following part will be organized as the corresponding three
parts.

7.1 Single-Label Classification

Experiment setup. We first verify the effectiveness of RAM-
L on seven UCI datasets ' and eight image datasets 2. The
detailed information of these datasets is listed in Table ??
and Table ??, where ”S/F/C” represents the number of sam-
ples, features and classes. We compare RAML with the state-
of-the-art methods, i.e., ITML [Davis et al., 2007], LMN-
N [Weinberger and Saul, 2009], DML [Ying and Li, 2012],
DoubletSVM (DSVM) [Wang et al., 2015], GMML [Zadeh
et al., 2016] on each dataset. For fair comparison, the param-
eters of all compared methods are set as the default setting
of the original references. For DSVM, we set £ = 1, and
the penalty factor C' < 10,000. For GMML, the weight ¢ is
set within [0,1] and chosen by greedy search. Ten-fold cross
validation is introduced to evaluate the metric learning perfor-
mance, i.e., 90% for training and 10% for testing. The average
accuracy of 10-fold cross validation is reported.

Experimental analysis. Table ?? and Table ?? list the
classification accuracy of different metric learning method-
s on UCI datasets and image datasets, respectively, where
the best results are marked in bold face. RAML-SVR and
RAML-KRR indicate support vector regression metric learn-
ing and ridge regression metric learning, respectively. RAML
achieves superior results in terms of the evaluation criteria on
most dataset. The performance of RAML-SVR is similar to
RAML-KRR. For RAML-KRR, when the number of samples
increase significantly, the efficiency will be reduced because

"http://archive.ics.uci.edu/ml/index.php
“http://www.escience.cn/people/fpnie/index.html
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its time complexity is o(n?®), where n is the number of sam-
ples.

7.2 Multi-Label Classification

Datasets. In this section, we evaluate the proposed method
using three datasets 3, i.e., emotion [Trohidis et al., 2008],
flags, and corel800 dataset [Hoi et al., 2006]. The emotion
dataset [Trohidis et al., 2008] consists of 100 songs from each
of the following 7 different genres, Classical, Reggae, Rock,
Pop, Hip-Hop, Techno and Jazz. The collection was created
from 233 musical albums choosing three songs from each al-
bum. The flag dataset contains 194 instances, 19 features and
7 labels (red, green, blue, yellow, white, black, orange). The
corel 800 dataset [Hoi et al., 2006] contains 800 grayscale
images of 10 individuals with 80 images per class.
Evaluation metrics. We employ five multi-label classifica-
tion measures as evaluation metrics including Hamming loss,
ranking loss, one error, coverage and average precision. Ham-
ming loss measures accuracy in a multi-label classification
task. Ranking loss has the property that the minimization of
the loss functions will lead to the maximization of the ranking
measures. MLKNN is the multi-label version of KNN [Zhang
and Zhou, 2007] and it is based on statistical information de-
rived from the label sets of an unseen instance’s neighboring
instances. As no specific metric learning algorithms are de-
veloped for MLKNN, here we use MLKNN as the baseline.
If the performance of RAML is superior to MLKNN, the ef-
fectiveness of RAML is verified.

Experimental analysis. Experimental results of RAML and
MLKNN are reported in Table 3, where the best result on each
evaluation criterion is shown in bold face. The " after the
measures indicates “the smaller the better and "1™ after the
measures indicates “the larger the better. As shown in Table
3, both RAML-SVR and RAML-KRR achieve superior re-
sults in terms of the five evaluation measures. Compared with
MLKNN, RAML can learn a discriminative distance metric,
making the sample relation in the feature space more consis-
tent with that in the decision space.

Data emotion flags corel800

Hamming Loss] [0.2137 0.3099 0.0137

Ranking Loss] |0.1729 0.2228 0.1888

MLKNN One Error) 0.3317 0.2154 0.6825
Coveragel 1.9158 3.8154 88.5100

Average Precision?| 0.7808 0.8084 0.3276

Hamming Loss] |0.2054 0.2967 0.0135

Ranking Loss]. |0.1577 0.2179 0.1882

RAML-SVR|  One Error] 0.2376 0.2000 0.6425
Coverage| 1.8960 3.8115 88.2350

Average Precisiont| 0.8101 0.8128 0.3386

Hamming Loss| |0.2046 0.2967 0.0134

Ranking Loss| |0.1382 0.2113 0.1888

RAML-KRR|  One Error) 0.2574 0.2000 0.6550
Coverage| 1.7327 3.7692 88.5100

Average Precisiont| 0.8225 0.8112 0.3388

Table 3: The performance of RAML-SVR, RAML-KRR and M-
LKNN in terms of five evaluation measures.

3http://mulan.sourceforge.net/datasets-mlc.html
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7.3 Label Distribution Learning

Datasets. The dataset employed in this experiment includes
2,000 natural scene images [Zhang and Zhou, 2007]. There
are nine possible labels associated with these images, i.e.,
plant, sky, cloud, snow, building, desert, mountain, water and
sun. The image features are extracted using the method in
[Boutell et al., 2004]. Each image is represented by a feature
vector of 294 dimensions. The output of each instance is a dis-
tribution rather than discrete labels. AAKNN is the extended
version of KNN in label distribution learning. Here AAKN-
N is used as the baseline without metric learning in the label
distribution task.

Evaluation metrics. Different from both the single label out-
put and the label set output of multi-label learning, the out-
put of label distribution learning algorithm is a label distri-
bution. The evaluation measures for label distribution learn-
ing is the average distance or similarity between the predict-
ed and real label distributions. On a particular dataset, each
of the measures may reflect some aspects of an algorithm. It
is hard to say which evaluation metric is the best. Therefore,
we use several measures to evaluate the proposed algorithm,
and compare RAML with the classical AAKNN method. Fi-
nally we employ five measures: Chebyshev distance (Cheb),
Clark distance (Clark), Canberra metric (Canber), cosine co-
efficient (Cosine), and intersection similarity(Intersec) [Cha,
2007]. The first three are distance measures and the last two
are similarity measures.

Experimental analysis. Table 4 shows RAML and AAKN-
N in terms of five measures. We show the best result with
respect to each measure in bold face. The "] after the mea-
sures indicates “the smaller the better. 1 after the measures
indicates “the larger the better”. One can easily conclude that
our RAML methods perform better than AAKNN in terms of
five different measures. It owes to more discriminative metric
learned by the proposed RAML formulation.

Criterion AAKNN RAML-SVR  RAML-KRR
Chebyshev] 0.3261+0.0120 0.3102£0.0123 0.3139-+0.0157
Clark] 1.844840.0233 1.6986+0.0386 1.6865-+0.0468
Canberra] 4.341240.0650 3.8576+0.1316 3.8419+0.1316
Cosinet  0.690540.0167 0.7051+0.0167 0.7057+0.0126
Intersection? 0.5506+£0.0120 0.5739+0.0261 0.5743+0.0172

Table 4: The performance of RAML-SVR, RAML-KRR and
AAKNN in terms of five measures on Nature Scene dataset.

8 Conclusions

In this paper, we proposed a relation alignment metric learn-
ing (RAML) formulation to learn distance metrics for various
kinds of learning tasks. Different from all existing method-
s relying on similar and dissimilar relations between sample
pairs, we formulated metric learning problem as a kernel re-
gression model via relation alignment learning. Based on our
RAML formulation, two metric learning methods are instan-
tiated with support vector regression and kernel ridge regres-
sion. Experimental result show RAML is very competitive
with state-of-the-art metric learning methods on single-label
classification, moreover it can improve the performance of
multi-label learning and label distribution learning tasks.
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