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Abstract

This work presents a simple yet effective model for
multi-view metric learning, which aims to improve
the classification of data with multiple views, e.g.,
multiple modalities or multiple types of features.
The intrinsic correlation, different views describing
same set of instances, makes it possible and nec-
essary to jointly learn multiple metrics of different
views, accordingly, we propose a multi-view metric
learning method based on Fisher discriminant anal-
ysis (FDA) and Hilbert-Schmidt Independence Cri-
teria (HSIC), termed as Fisher-HSIC Multi-View
Metric Learning (FISH-MML). In our approach,
the class separability is enforced in the spirit of F-
DA within each single view, while the consistence
among different views is enhanced based on HSIC.
Accordingly, both intra-view class separability and
inter-view correlation are well addressed in a uni-
fied framework. The learned metrics can improve
multi-view classification, and experimental result-
s on real-world datasets demonstrate the effective-
ness of the proposed method.

1 Introduction
With the rapid development of information acquirement tech-
nique, data are usually represented with different modalities
or different types of features. In computer vision, images are
often depicted with different types of descriptors based on
color or texture cues; RGB-D images are considered as multi-
modal data consisting of depth and color information. For
social network analysis (SNA), different relationships usu-
ally characterize the same set of users, and different types
of attributes or textual information are often associated with
those users, e.g., user-generated content or demographic de-
tails. Recently, there are intensive attentions on developing
classification or clustering models for the data with multiple
views, and the effectiveness has been empirically proven on
diverse applications [Kumar et al., 2011; Wang et al., 2016;
Gong, 2017; Zhao et al., 2017; Cao et al., 2015; Zhang et al.,
2015; 2017].
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Figure 1: Illustration of Fisher-HSIC Multi-View Metric Learning.
The proposed model enforces separability within each view using
label information, and simultaneously respects consistence across
different views.

As recognized by recent researches [Sindhwani and Rosen-
berg, 2008; Dhillon et al., 2011; Liu et al., 2016], the main
challenge of exploiting multi-view data lies in how to ef-
fectively explore the underlying correlation among differen-
t views. It is nontrivial since although different views in-
deed depict same set of instances, the feature space of one
view can be completely different from that in another view,
which is known as heterogeneous features. For example,
Euclidean distances are typically employed as the distance
measure for HOG [Dalal and Triggs, 2005], while spatial
matching kernels are widely used for the local descriptors
SIFT [Lowe, 1999]. Moreover, features of one view can
be high-dimensional while another one may be not and fea-
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tures of one view may be much more noisy than another view.
These challenges increase the difficulty of integrating differ-
ent views. The representative and straightforward strategy is
feature integration, i.e., directly concatenating all views in-
to high-dimensional vectors or performing dimensionality re-
duction jointly (such as Canonical Correlation Analysis (C-
CA)). However, direct combination of feature vectors or sim-
ple linear combination of the outputs of different views can
not guarantee promising performance, and CCA-based meth-
ods [Blaschko and Lampert, 2008; Chaudhuri et al., 2009]
only explore linear correlations thus neglect complex correla-
tions in real applications.

Metric learning can learn a distance function to well reflect
the relationships between data points consistent with their se-
mantic labels, which could benefit to subsequent tasks, e.g.,
classification or clustering. Generally, metric learning ap-
proaches seek a Mahalanobis distance with the paired sam-
ples or other side information encoding relationships of da-
ta. Compared with the Euclidean distance in original feature
space, the learned distance metric could better reveal the re-
lationships between data points. Due to its effectiveness, ex-
tensive metric learning methods [Weinberger and Saul, 2009;
Davis et al., 2007; Guillaumin et al., 2009] have been pro-
posed and widely applied in real-world applications.

In this paper, we propose to learn distance metric for da-
ta with multiple views, i.e., jointly learning multiple met-
rics to explore complementary information across multiple
views. Towards this goal, we propose Fisher-HSIC Multi-
View Metric Learning (FISH-MML) algorithm. On the one
hand, we introduce Fisher discriminant analysis (FDA) to
search for the optimal projections (corresponding to Maha-
lanobis distance metrics) to maximize class separability and
preserve expressiveness within each view, which alleviates
the difficulty of classification compared with original features
(corresponding to Euclidean distance metrics). On the other
hand, to explore the complementarity from different views,
our model maximizes the dependence among different views
with Hilbert-Schmidt Independence Criterion (HSIC), which
ensures between-data relationships (under the learned met-
rics) of different views to be consistent in kernel space. The
proposed approach is effectively optimized by using the Al-
ternating Direction Minimization (ADM) strategy, and exten-
sive experiments validate the effectiveness of our approach.

The highlights of this paper are summarized as follows:
(1) We propose a novel multi-view metric learning method,
which is simple yet rather effective.
(2) Our model simultaneously enhances class separability
within each view and explores complex correlation across
multiple views in a unified framework.
(3) With FDA, class separability within each view is en-
hanced, while by using HSIC, our method can effectively ex-
plore correlations among different views.
(4) Based on Alternating Direction Method (ADM), our ob-
jective is efficiently optimized with guaranteed convergence.
(5) Experiments on real-world multi-view datasets validate
the effectiveness of our method for classification.

2 Related Work
There have been quite a few distance metric learning ap-
proaches. The early work in [Xing et al., 2003] learns dis-
tance metric with side information that indicates two data
samples being similar or dissimilar. This method is formu-
lated as a convex optimization problem. The work in [Davis
et al., 2007] introduces information theory and formulates the
task as minimizing the differential relative entropy between t-
wo multivariate Gaussians under constraints on distance func-
tion. LMNN (Large Margin Nearest Neighbors) [Weinberger
and Saul, 2009] learns a metric for k-Nearest Neighbor (kN-
N) classifier to enforce that k-nearest neighbors belong to the
same class while examples from different classes are sepa-
rated by a large margin. There are also some methods that
learn distance metrics under sparsity [Ying et al., 2009] or
low-rank [Ding et al., 2015] assumptions.

Due to the ubiquitousness of data with multiple modali-
ties or descriptors, the literature of multi-view learning has
spanned a very broad range. In metric learning domain,
the method HMML (Heterogeneous Multi-Metric Learning)
[Zhang et al., 2011] proposes to jointly learn a set of het-
erogeneous metrics for multi-sensor data fusion, which gen-
eralizes LMNN [Weinberger and Saul, 2009] from single-
view to multi-view learning. The work in [Xie and Xing,
2013] proposes a general framework of multi-modal distance
metric learning based on multi-wing harmonium model, in
which different modalities are embedded into a shared latent
space. The researchers also propose a large margin multi-
metric learning (LM3L) [Hu et al., 2014] method for face
and kinship verification. Recently, deep model-based met-
ric learning methods [Hu et al., 2017; Lu et al., 2015] have
been proposed. The sharable and individual multi-view deep
metric learning (MvDML) approach [Hu et al., 2017] jointly
learns multiple distance metrics for multi-view data by seek-
ing an individual distance metric for each view and a common
representation for different views in a unified latent subspace.

3 Background
For notations used throughout this paper, boldface uppercase,
boldface lowercase, and normal italic letters are utilized to
denote matrix, vector, and scalar respectively. We denote fea-
ture matrix as X ∈ Rd×n, where d and n are dimensionality
of feature space and number of samples, respectively. xi is
the feature vector of the ith samples. For data represented
by V different views, we use X = {X(v) ∈ Rdv×n}Vv=1 to
denote the set of feature matrices of multiple views with dv
being the dimensionality of the feature space for the vth view.

Similar to traditional metric learning algorithms, in our
model, we also focus on learning the Mahalanobis distance.
In contrast, our model jointly learns these multiple Maha-
lanobis distances of multiple views. Generally, the Maha-
lanobis distance has the following definition:
Definition 3.1. (Mahalanobis distance). The Mahalanobis
distance between two samples xi and xj is defined as

d2M(xi,xj) = ||xi − xj ||2M = (xi − xj)
TM(xi − xj),

where the Mahalanobis matrix M is constrained to be sym-
metric positive-definite to assure the validity.
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4 Fisher-HSIC Multi-View Metric Learning
Firstly, we try to propose a general framework for multi-view
metric learning (MML) that can jointly learn multiple metrics
for multiple views. The general form of multi-view metric
learning is given as follows:

max{M(v)}Vv=1
S({M(v)}Vv=1)︸ ︷︷ ︸

class separability

+λ C({M(v)}Vv=1)︸ ︷︷ ︸
view consistence

,
(1)

where M(v) is the distance metric of the vth view, and λ > 0
is a tradeoff hyperparameter. The above objective function
searches the optimal metrics that can simultaneously maxi-
mize the class separability (with S(·)) and penalize the dis-
agreement between different views (with C(·)).
Separability and Expressiveness
To ensure the class separability within each view, FDA is in-
troduced into our model, which is based on the definitions of
between-class and total scatter matrices:

Sb =
1

n

g∑
j=1

nj(µj − µ)(µj − µ)T ,

St =
1

n

n∑
i=1

(xi − µ)(xi − µ)T ,

µj =
1

nj

nj∑
i=1

xj
i , µ =

1

n

n∑
i=1

xi,

(2)

where xj
i denotes the feature vector of the ith sample in class

Cj , µj and µ are sample means for class Cj and the whole
data set, respectively. g and nj are the number of classes and
the number of samples belonging to class Cj , respectively.

On the one hand, we note that Euclidean distance is in-
volved in Eq.(2) which is used in FDA. This could be im-
proved with the Mahalanobis distance, i.e., (xi − µ)T (xi −
µ)→ (xi − µ)TM(xi − µ). On the other hand, when M is
a symmetric positive-definite matrix, dM is a metric. Specif-
ically, as any symmetric positive semi-definite matrix M ∈
Sd
+ can be decomposed as M = PTP, where P ∈ Rk×d and
k ≥ rank(M). Accordingly, the distance metric function can
be rewritten as d2M(xi,xj) = (xi − xj)

TPTP(xi − xj) =
||P(xi−xj)||22, which corresponds to the Euclidean distance
between projected feature vectors. Therefore, with respect to
the new space (induced by P(v)), the between-class and to-
tal scatter matrices in the vth view, i.e., S(v)

b and S
(v)
t , are

induced as follows:

S
(v)
b =

1

n

g∑
j=1

nj(µ
(v)
j − µ(v))(µ

(v)
j − µ(v))T ,

S
(v)
t =

1

n

n∑
i=1

(z
(v)
i − µ(v))(z

(v)
i − µ(v))T ,

µ
(v)
j =

1

nj

nj∑
i=1

z
j(v)
i ,µ(v) =

1

n

n∑
i=1

z
(v)
i ,

(3)

where z(v) = P(v)x(v) with z(v) being the projected fea-
ture vector corresponding to x(v). µ

(v)
j and µ(v) are sample

means of the vth view for class Cj and the whole data set,
respectively.

Then we aim to maximize the class separability within each
view for the most discriminative capability parameterized by
the projections {P(v)}Vv=1. In the spirit of FDA, we need to
optimize the following unconstrained optimization objective
function:

max
{P(v)}Vv=1

V∑
v=1

Tr(S
(v)
b ;P(v))− γTr(S(v)

t ;P(v)), (4)

where Tr(·) is the matrix trace operator and γ is a tunable
parameter to balance the two terms involved. Tr(S(v)

b ;P(v))

denotes the trace operator for S(v)
b conditioned on P(v).

Note that, we do not constrain γ in Eq.(4) to be positive
and there are different meanings for positive and negative
cases. With γ > 0, the objective function maximizes the in-
terclass scattering while simultaneously minimizes the total
scattering and thus, the intra-class scattering is automatically
minimized. However, as recognized by [Cheng et al., 2011],
it may be sensitive to spurious features of the data in high-
dimensional case. This inspired us to set γ < 0 to pursuit
the expressiveness. Specifically, in this manner, it actually
maximizes not only discriminativeness but also expressive-
ness jointly. Recall the objective function of PCA (Principal
Component Analysis), i.e.,

max
v

1

n

n∑
i=1

{vTxi − vTµ}2 = vTSv

with S =
1

n

n∑
i=1

(xi − µ)(xi − µ)T ,

(5)

where we take the first component as example for simplic-
ity, and the constraint vTv = 1 indicates that we are only
interested in the direction instead of its magnitude. Similar
to PCA which maximizes the above objective function, we
maximize Tr(S(v)

t ;P(v)) with respect to P(v) to account for
expressiveness.

Consistence across Multiple Views
The above objective function focuses on seeking metrics that
jointly maximize discriminativeness and expressiveness. Our
model is devoted to handle data with multiple views where
complementarity is critical, hence now we try to explore
complementary information from multiple views by using
Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et
al., 2005]. To determine complex associations of two signals,
HSIC has been theoretically [Gretton et al., 2005] and empir-
ically [Xiao and Guo, 2015; Song et al., 2007] justified to be
a proper measure of (in)dependence when associated with a
universal kernel.

Letting the observations Z(v) and Z(w) (corresponding to
two different views) contain n data points {(z(v)i , z

(w)
i ) ∈

X × Y}ni=1 that are jointly drawn from a probability distri-
bution Pz(v)z(w) , the consistence between two views is mea-
sured by the dependence between z(v) and z(w). The depen-
dence measured by HSIC is computed according to the nor-
m of the cross-covariance operator over the domain X × Y
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in Hilbert space. A large HSIC value indicates strong de-
pendence with respect to the choice of kernels. The H-
SIC is defined as HSIC(Pz(v)z(w) ,F ,G) := ||Cz(v)z(w) ||2HS,

where ||A||HS =
√∑

i,j a
2
ij . F and G are reproduc-

ing kernel Hilbert Space (RKHS) on X and Y , respective-
ly. The cross-covariance is a function that gives the covari-
ance of two random variables and defined as Cz(v)z(w) =
Ez(v)z(w) [(φ(z(v)) − µz(v)) ⊗ (ϕ(z(w)) − µz(w))], where
µz(v) = E(φ(z(v))), µz(w) = E(ϕ(z(w))), and ⊗ is the
tensor product. φ(z(v)) and ϕ(z(w)) are functions that map
z(v) ∈ X and z(w) ∈ Y to kernel space F and G with respect
to the kernel functions kv(z

(v)
i , z

(v)
j ) =< φ(z

(v)
i ), φ(z

(v)
j ) >

and kw(z
(w)
i , z

(w)
j ) =< ϕ(z

(w)
i ), ϕ(z

(w)
j ) >. Accordingly,

we have the empirical HSIC defined as:

HSIC(Z(v),Z(w)) = (n− 1)−2tr(KvHKwH), (6)

where Kv and Kw are the Gram matrices with kv,ij =

kv(z
(v)
i , z

(v)
j ), kw,ij = kw(z

(w)
i , z

(w)
j ). hij = δij − 1/n

centers the Gram matrix to have zero mean in the feature s-
pace. In our implementation, we use the inner product kernel
function, i.e., K(v) = Z(v)TZ(v) = X(v)TP(v)TP(v)X(v),
and promising performance are achieved. Note that maxi-
mizing HSIC(Z(v),Z(w)) enhances the dependency between
K(v) and K(w), which penalties the disagreement between k-
ernel matrices from different views parameterized by the pro-
jections P(v) and P(w).

Objective Function
For multi-view metric learning, we jointly enhance intra-view
separability, expressiveness, and inter-view correlations with
respect to the learned metrics in a unified objective function:

max
{P(v)}Vv=1

V∑
v=1

tr(Sb
(v);P(v)) + λ1

V∑
v=1

tr(St
(v);P(v))

+ λ2
∑

v 6=w
HSIC(P(v)X(v),P(w)X(w))

s.t. P(v)P(v)T = I, v = 1, ..., V,

(7)

where λ1 > 0 and λ2 > 0 are hyperparameters encoding the
belief degrees for expressiveness and inter-view consistence,
respectively. Note that we impose orthogonal constraints on
P(v) (i.e., P(v)P(v)T = I) for the following reasons: first, it
can address the scale issue, since without this constraint, the
values of P(v) will be arbitrarily large to maximize the objec-
tive; second, it is consistent with the requirement of expres-
siveness in PCA (see Eq.(5)); last but not the least, it also pro-
vides convenience for optimization which will be discussed
later. Our objective function can be rewritten as follows:

max
{P(v)}Vv=1

V∑
v=1

tr
(
P(v)(A+ λ1B+ λ2C)P(v)T

)
= max
{P(v)}Vv=1

V∑
v=1

tr
(
P(v)DP(v)T

) (8)

with

A =
1

n

g∑
j=1

nj(
1

nj

nj∑
i=1

x
j(v)
i − 1

n

n∑
i=1

x
(v)
i )

(
1

nj

nj∑
i=1

x
j(v)
i − 1

n

n∑
i=1

x
(v)
i )T ,

B =
1

n

n∑
i=1

(x
(v)
i −

1

n

n∑
i=1

x
(v)
i )(x

(v)
i −

1

n

n∑
i=1

x
(v)
i )T ,

C =
V∑

w=1;w 6=v

X(v)HK(w)HX(v)T ,

D = A+ λ1B+ λ2C.

(9)

The discriminativeness, expressiveness, and consistence are
accounted by A, B and C, respectively. Given the condition
P(v)P(v)T = I and with variables of the other views fixed,
updating P(v) is an eigenvalue decomposition task which
could be efficiently solved. Once P(v)s are learned, we can
get M(v) by M(v) = P(v)TP(v). Then the multi-view da-
ta Xi = {xi

(1), . . . ,xi
(V )} can be projected by P(v)s and

transformed into X̂i = {P(1)xi
(1), . . . ,P(V )xi

(V )}. With
concatenation of all the projected feature vectors, existing
classification methods (e.g., kNN) could be employed.

To summarize, our approach has the following merits: (1)
our model is simple yet effective for multi-view metric learn-
ing; (2) our model can jointly learn multiple metrics by si-
multaneously enforcing separability, expressiveness, and ex-
ploring complex correlations among different views; (3) both
intra-view relationships of data points and inter-view correla-
tions of different views are addressed seamlessly in a unified
framework; (4) our approach is solved efficiently with the al-
ternating direction method (ADM), and since the value of our
objective function is non-decreasing with iterations, the algo-
rithm is guaranteed to converge.

5 Experiments
We conduct experiments on four real-world datasets and com-
pare our FISH-MML with existing state-of-the-art methods in
terms of diverse evaluation measures.

5.1 Setting
The datasets employed are as follows:
•handwritten1 contains 2000 images of 10 classes from
number 0 to 9. There are 6 types of descriptors exacted:
Pix (view1), Fou (view2), Fac (view3), ZER (view4), KAR
(view5) and MOR (view6).
•Caltech101-72 contains a subset of images from Cal-
tech101. There are 7 categories selected with 1474 im-
ages: faces, motorbikes, dollar-bill, garfield, snoopy, stop-
sign, and windsor-chair. 6 types of features are used: Gabor
(view1), WM (view2), CENTRIST (view3), HOG (view4),
GIST (view5) and LBP (view6).

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
2http://www.vision.caltech.edu/Image Datasets/Caltech101/
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Method Metrics kNN ITML LMNN LDML GMML Ours

handwritten

Accuracy .972±.008 .969±.013 .928±.012 .976±.005 .977±.006 .979±.006
F1-score .945±.016 .939±.026 .864±.022 .953±.011 .955±.011 .959±.011
Precision .944±.017 .939±.026 .863±.023 .953±.011 .955±.011 .958±.013

Recall .946±.015 .938±.026 .865±.020 .953±.010 .955±.011 .959±.010

Caltech101

Accuracy .879±.014 .901±.014 .838±.024 .879±.014 .879±.014 .977±.007
F1-score .863±.024 .900±.023 .881±.019 .863±.024 .867±.024 .982±.008
Precision .815±.029 .841±.030 .862±.033 .815±.029 .821±.027 .967±.015

Recall .961±.027 .969±.020 .903±.034 .955±.026 .964±.025 .997±.001

MSRA

Accuracy .719±.069 .795±.068 .752±.097 .793±.079 .721±.068 .874±.042
F1-score .583±.093 .660±.103 .605±.143 .656±.124 .583±.093 .766±.078
Precision .572±.099 .657±.099 .604±.138 .660±.126 .574±.099 .779±.081

Recall .596±.096 .671±.090 .608±.152 .654±.128 .596±.096 .755±.085

football

Accuracy .727±.069 .847±.047 .608±.076 .812±.051 .749±.055 .824±.038
F1-score .498±.124 .743±.091 .474±.115 .698±.085 .556±.107 .680±.116
Precision .428±.151 .718±.109 .455±.123 .677±.105 .497±.132 .645±.138

Recall .635±.057 .776±.090 .502±.117 .725±.081 .651±.057 .729±.108

Table 1: Comparison to metric learning methods with best single view.

Method Metrics kNN ITML LMNN LDML GMML HMML EMGMML Ours

handwritten

Accuracy .941±.015 .948±.013 .922±.020 .944±.012 .939±.011 .927±.013 .839±.012 .979±.006
F1-score .886±.027 .901±.022 .854±.037 .892±.020 .884±.018 .861±.023 .770±.017 .959±.011
Precision .884±.028 .901±.022 .853±.038 .892±.019 .884±.018 .860±.023 .760±.019 .958±.013

Recall .888±.026 .901±.023 .854±.036 .892±.021 .885±.019 .861±.023 .780±.016 .959±.010

Caltech101

Accuracy .882±.012 .915±.016 .830±.061 .882±.012 .881±.013 .921±.013 .919±.007 .977±.007
F1-score .862±.021 .921±.018 .810±.099 .862±.062 .861±.023 .913±.016 .903±.010 .982±.008
Precision .787±.034 .873±.028 .778±.113 .787±.034 .786±.033 .861±.025 .830±.015 .967±.015

Recall .954±.024 .974±.016 .847±.084 .954±.024 .952±.030 .970±.016 .991±.004 .997±.001

MSRA

Accuracy .700±.092 .769±.057 .767±.098 .700±.092 .702±.095 .798±.044 .802±.030 .874±.042
F1-score .555±.125 .616±.089 .627±.140 .555±.125 .556±.140 .641±.071 .651±.032 .766±.078
Precision .540±.125 .595±.086 .622±.135 .540±.125 .543±.148 .620±.062 .628±.036 .779±.081

Recall .575±.137 .641±.103 .632±.148 .575±.137 .574±.142 .667±.096 .675±.033 .755±.085

football

Accuracy .631±.077 .580±.078 .416±.053 .627±.078 .651±.070 .522±.093 .702±.088 .824±.038
F1-score .432±.106 .413±.071 .230±.075 .426±.105 .469±.095 .305±.078 .349±.174 .680±.116
Precision .351±.103 .377±.071 .209±.070 .345±.101 .402±.087 .261±.077 .287±.179 .645±.138

Recall .576±.119 .460±.080 .264±.096 .571±.125 .570±.121 .383±.107 .483±.126 .729±.108

Table 2: Comparison to metric learning methods with multiple views.

(a)  handwritten (b)  Caltech101 (c)  MSRA (d)  football

Figure 2: Visualization of features with t-SNE. The top row corresponds to direct concatenation of the original feature vectors of multiple
views (i.e., [x(1); ...;x(V )]), while the bottom row is the visualization result of our approach (i.e., [P(1)x(1); ...;P(V )x(V )]).
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•MSRA [Liu et al., 2010] contains 210 images labeled with
7 classes: tree, building, airplane, cow, face, car, and bicy-
cle. 6 types of features are extracted: CENT (view1), CMT
(view2), GIST (view3), HOG (view4), LBP (view5), and
SIFT (view6).
•football3 consists of 248 English Premier League football
players on Twitter labeled with 20 communities. There are
6 views describing relationships between two users: follows
(view1), followed by (view2), mentions (view3), mentioned
by (view4), retweets (view5) and retweed by (view6).

We compared our method with the following baselines:
◦ kNN. We conduct kNN based on Euclidean distance for
each single view of features and feature concatenation.
◦ ITML (Information-Theoretic Metric Learning) [Davis et
al., 2007]. The method characterizes the metric using a Ma-
halanobis distance by formulating the problem as minimiz-
ing the differential relative entropy between two multivariate
Gaussians under constraints on the distance function.
◦ LMNN ((Large Margin Nearest Neighbors) [Weinberger
and Saul, 2009]. The method learns a Mahanalobis distance
metric to improve kNN classification.
◦ LDML (Logistic Discriminant Metric Learning) [Guillau-
min et al., 2009]. This method employs logistic discriminant
to learn a metric such that positive pairs have smaller dis-
tances than negative pairs.
◦ HMML (Heterogeneous Multi-Metric Learning) [Zhang et
al., 2011]. The method proposes to jointly learn multiple op-
timal homogenous/heterogeneous metrics in order to fuse the
data collected from multiple sensors for classification by gen-
eralizing the LMNN framework.
◦ GMML (Geometric Mean Metric Learning) [Zadeh et al.,
2016]. The method is built on geometric intuition, and learns
a symmetric positive definite matrix by formulating it as a s-
mooth, strictly convex optimization problem.
◦ EMGMML (Efficient Multi-modal Geometric Mean Met-
ric Learning) [Liang et al., 2017]. The method proposes to
learn a set of optimal homogenous/heterogeneous metrics by
generalizing the GMML framework.

Each dataset is randomly partitioned into 80% for training
and 20% for testing. Then 20% samples are randomly select-
ed from the training set as validation set for parameter tuning.
We select the value from {0.001, 0.01, 0.1, 1, 10, 100, 1000}
for λ1 and λ2. Uniformly, we set the number of nearest neigh-
borhoods to 5 for all methods on each dataset. For the ran-
domness involved in data partition, we run 10 times and re-
port the averaged performance with deviation.

5.2 Results
Since the objective is non-decreasing with the iterations, the
algorithm is guaranteed to converge. We conduct conver-
gence experiments on four datasets and show as in Fig.3. As
shown in Table 1, we first compared ours with existing metric
learning methods with the best single view. It is observed that
our FISH-MML achieves the best performance on 3 out of 4
datasets in terms of all evaluation metrics. As a strong com-
petitor, ITML performs as the best on football. However, on
handwritten, Caltech101-7 and MSRA, ITML does not per-

3http://mlg.ucd.ie/aggregation/index.html
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Figure 3: Convergence experiment.

form very well. As shown in Table 2, we also compared our
method with multi-view metric learning approaches. For tra-
ditional single-view metric learning methods, we concatenate
feature vectors from multiple views as input. There are also
two comparisons which are specially designed for multi-view
data, i.e., HMML and EGMML. Our method outperforms all
the comparisons on these four datasets, which further demon-
strates the advantage of FISH-MML in exploring comple-
mentarity from multiple views. Fig.2 intuitively demonstrates
the advantage of our approach by using t-distributed stochas-
tic neighbor embedding (t-SNE) [Maaten and Hinton, 2008],
since clusters in terms of ground-truth labels with our model
are more compact and separable than those of directly com-
bining different views.

6 Conclusions
This paper has proposed a metric learning model for multi-
view data which aims at jointly learning multiple metrics for
multiple views. Our proposal has the advantage of simul-
taneously exploring the intra-view relationships and inter-
view correlations in a unified framework. Specifically, we
introduce Fisher discriminant analysis to enhance separabil-
ity and expressiveness, and utilize Hilbert-Schmidt Indepen-
dence Criteria to ensure consistence across different views.
Our method is relatively simple to implement and easy to op-
timize with guaranteed convergence to local minimal. Exper-
iments on benchmark datasets have verified the advantages of
our approach over state-of-the-art metric learning methods.
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