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Abstract—Monotonic classi�cation is a kind of special task
in machine learning and pattern recognition. Monotonicity con-
straints between features and decision should be taken into ac-
count in these tasks. However, most existing techniques are not
able to discover and represent the ordinal structures in monotonic
datasets. Thus, they are inapplicable to monotonic classi�cation.
Feature selection has been proven effective in improving classi�-
cation performance and avoiding over�tting. To the best of our
knowledge, no technique has been specially designed to select fea-
tures in monotonic classi�cation until now. In this paper, we in-
troduce a function, which is called rank mutual information, to
evaluate monotonic consistency between features and decision in
monotonic tasks. This function combines the advantages of domi-
nance rough sets in re�ecting ordinal structures and mutual infor-
mation in terms of robustness. Then, rank mutual information is
integrated with the search strategy of min-redundancy and max-
relevance to compute optimal subsets of features. A collection of
numerical experiments are given to show the effectiveness of the
proposed technique.

Index Terms—Feature selection, fuzzy ordinal set, monotonic
classi�cation, rank mutual information (RMI).

I. INTRODUCTION

C LASSIFICATION tasks can be divided into two groups:
nominal classification and ordinal classification. As to

nominal classification [52], [53], [56], there is no ordinal struc-
ture among different decision values. For example, we recognize
different diseases according to the symptoms of patients. How-
ever, as to ordinal classification (which is also called ordinal
regression) [1], [3], [4], [55], we should consider the ordinal
relationship between different class labels, such as the severity
levels of a disease {slight, medium, and severe}. Furthermore,
monotonic classification is a class of special ordinal classifica-
tion tasks, where the decision values are ordinal and discrete,
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and there are monotonicity constraints between features and
decision classes where x ≤ x′ ⇒ f(x) ≤ f(x′) [1]. Monotonic
classification is a kind of common tasks in medical analysis, so-
cial, and behavioral sciences [2]. Such problems have attracted
increasing attention from the domains of machine learning and
intelligence data analysis [3]–[5].

The previous work on monotonic classification can be roughly
divided into two groups. One attempts to construct a the-
oretic framework for monotonic classification, including the
dominance rough set model [6]–[10] and the ordinal entropy
model [11], whereas the other is dedicated to developing algo-
rithms for learning decision models from samples [12]–[15].
In 1999, Greco et al. first introduced dominance relations
into rough sets and proposed the model of dominance rough
sets. This model built a formal framework to study mono-
tonic classification. After that, this model was extensively dis-
cussed and generalized. On the other hand, Ben-David extended
the classical decision tree algorithm to monotonic classifica-
tion in 1995. Since then, a collection of decision tree algo-
rithms have been developed for this problem [16]–[20]. In ad-
dition, Ben-David also extended the nearest neighbor classifier
to monotonic tasks and designed an ordinal learning model
(OLM) [22]. In 2003, Cao-Van introduced ordinal stochastic
dominance learner (OSDL) based on associated cumulative
distribution. In 2008, Lievens et al. presented a probabilistic
framework that served as the base of instance-based algorithms
to solve the supervised ranking problems [23]. In addition, in
2008, Duivesteijn and Feelders proposed a modified nearest
neighbor algorithm for the construction of monotone classi-
fiers from data by monotonizing training data. The relabeled
data were subsequently used as the training set by a modified
nearest neighbor algorithm [14]. Recently, support vector ma-
chines and other kernel machines have also been adapted to such
tasks [24], [25]. Based on the aforementioned survey, we can see
that monotonic classification is becoming a hot topic in machine
learning.

As we know, feature selection plays an important role in
improving classification performance and speeding up train-
ing [26], [27]. A great number of feature selection algorithms
have been designed for classification learning until now. The
main differences between these techniques lie in the met-
rics that are used to evaluate the quality of candidate fea-
tures and search strategies to find optimal solutions in terms
of the used metric. Mutual information (MI) [28]–[31], de-
pendence [32]–[36], consistency [37], [38], [54], distance [39],
and classification margin [40]–[42] were introduced or devel-
oped as metrics of feature quality in feature selection. In addi-
tion, after defining the optimization objectives, a search strategy
should be designed to find the optimal solution. Greedy search,
heuristic search, branch and bound, genetic optimization, and
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other intelligent search algorithms are used in feature selection
[43]–[45].

Although a lot of algorithms were developed for feature selec-
tion, little effort has yet to be devoted to design feature selection
algorithms for monotonic classification. As different consis-
tency assumptions are taken for monotonic classification and
nominal classification, the feature evaluation functions that are
developed for nominal classification cannot be directly applied
to monotonic classification because the metrics in nominal clas-
sification do not consider the monotonicity constraints. As a
result, a feature producing a large value of feature quality may
not be useful for enhancing the monotonicity of monotone tasks.
Thus, new evaluation functions should be developed for this kind
of special tasks. Kamishima and Akaho [46] and Baccianella et
al. [47] designed a feature selection procedure for ordinal classi-
fication, respectively. However, the feature evaluation functions
that are used in these algorithms do not reflect the monotonicity
between features and decision. Therefore, they are not appli-
cable to monotonic classification. In 2006, Lee et al. improved
the dependence function that is defined in dominance rough sets
and used it to attribute reduction for monotonic classification. In
addition, Xu et al.gave another framework of attribute reduction
based on evidence theory [48]. Although dependence that is de-
fined in dominance rough sets can reflect the ordinal structures
in monotonic data, dominance rough sets are very sensitive to
noisy information. The evaluation function may vary quite a bit
if there are several inconsistent samples in the datasets [49]. We
should design a robust metric of feature quality, which can also
discover ordinal structures of monotone tasks.

In 2010, Hu et al. introduced two new attribute metrics, i.e.,
rank mutual information (RMI) and fuzzy rank mutual informa-
tion (FRMI), to compute the monotonic consistency between
two random variables [11]. However, they did not discuss the
issue of feature selection for monotonic classification. In ad-
dition, no experimental analysis was described to show the
effectiveness of the proposed measure. As we know, MI in
Shannon’s information theory is widely used in feature eval-
uation for nominal classification tasks and its effectiveness has
been verified in applications [26]–[30], [50]. Naturally, we also
want RMI and FRMI to be powerful in evaluating and select-
ing monotonic features. Therefore, in this paper, we first dis-
cuss the properties of rank entropy and RMI in evaluating fea-
tures, and then we design feature selection algorithms based
on these metrics and conduct experiments to test them. We
integrate RMI with the search strategy of min-redundancy and
max-relevance (mRMR). Thus, an effective algorithm for mono-
tonic feature selection is constructed. Some numerical experi-
ments are presented to show the effectiveness of the proposed
technique.

The rest of this paper is organized as follows. First, we present
the preliminaries on monotonic classification and dominance
rough sets in Section II; then, we show the definitions of RMI
and FRMI and discuss their properties in Section III. Section IV
gives the feature selection algorithms for monotonic classifica-
tion. Numerical experiments are presented in Section V. Finally,
conclusions and future work are given in Section VI.

II. PRELIMINARIES ON MONOTONIC CLASSIFICATION

The following definitions can be found in [6] and [7].
DeÞnition 1:Let 〈U,A,D〉 be a set of classification dataset,

where U = {xi}n
i=1 is the set of samples, A = {aj }m

j=1 is the
set of attributes, and D is the decision of the samples. The
value domain of D is {d1 , d2 , . . . , dK }. If D is nominal, we say
〈U,A,D〉 is a nominal classification task. If there are ordinal
structures between the values of decision, d1 < d2 < · · · < dK ,
we say 〈U,A,D〉 is an ordinal classification task. Let v(x,A) de-
note the value vector of sample x on A, and let f be the decision
function. If ∀x ∈ U, v(x,A) ≤ v(x′, A), we have f(x) ≤ f(x′),
and then, we say 〈U,A,D〉 is a monotonic classification task.

In this paper, we focus on monotonic classification tasks.
DeÞnition 2:Given a monotonic classification task 〈U,A,D〉,

B ⊆ A, we associate ordinal relations with the attributes and
decision as

1) R≤
B = {(xi, xj )|v(xi, al) ≤ v(xj , al), ∀al ∈ B};

2) R≤
D = {(xi, xj ) ∈ U × U |v(xi,D) ≤ v(xj ,D)}.

DeÞnition 3:Given 〈U,A,D〉, B ⊆ A. ∀xi ∈ U , we define
the following subsets of samples:

1) [xi ]≤B = {xj ∈ U |(xi, xj ) ∈ R≤
B };

2) [xi ]≤D = {xj ∈ U |(xi, xj ) ∈ R≤
D };

which are called B-dominating set and D-dominating set of
xi , respectively.

Given 〈U,A,D〉, B ⊆ A, xi, xj ∈ U , the following conclu-
sions hold:

1) R≤
A ⊆ R≤

B ;
2) [xi ]≤A ⊆ [xi ]≤B ; and
3) if xj ∈ [xi ]≤B , then [xj ]≤B ⊆ [xi ]≤B , and [xi ]≤B =

∪{[xj ]≤B |xj ∈ [xi ]≤B }.
DeÞnition 4:Given 〈U,A,D〉, B ⊆ A, X ⊆ U . The lower

and upper approximations of X in terms of B are defined as
follows:

1) R≤
B X = {x ∈ U |[x]≤B ⊆ X};

2) R≤
B X = {x ∈ U |[x]>B ∩ X �= ∅}.

It is easy to obtain the following conclusions:

1) R≤
B X ⊆ X ⊆ R≤

B X;

2) R≤
B U ⊆ U , R≤

B ∅ ⊆ ∅;

3) R≤
B ∼ X = ∼ R≤

B X , R≤
B ∼ X = ∼ R≤

B X;

4) if X ⊆ Y ⊆ U , R≤
B X ⊆ R≤

B Y , R≤
B X ⊆ R≤

B Y .
DeÞnition 5:Given 〈U,A,D〉, B ⊆ A. di is the ith class, the

boundary of di are defined as

BN(d≤
i ) = R≤

B d≤
i − R≤

B d≤
i . (1)

DeÞnition 6:Given 〈U,A,D〉, B ⊆ A, and {d1 , d2 , . . . , dK }
is the value domain of D. The boundary of classification D is
defined as

BN(D≤) =
K
∪

i=1
BN(d≤

i ). (2)

Similarly, we can also define BN(d≥
i ) and BN(D≥). It

is easy to derive that BN(d≤
i ) = BN(d≥

i+1) and BN(D≥) =
BN(D≤). Moreover, we define RB di = R≤

B d≤
i ∩ R≥

B d≥
i .
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Fig. 1. Toy example of dominance rough sets.

Example 1:A set of objects is divided into three levels ac-
cording to the attribute B, which is presented in Fig. 1, where
×, •, and � stand for samples coming from classes 1, 2, and 3,
respectively.

According to the aforesaid definitions, we obtain that RB d1 =
{x1 , x2 , x3 , x4}, BN(d≤

2 ) = {x5 , x6}, RB d2 = {x7 , x8 , x9},
BN(d≤

2 ) = {x10 , x11}, and RB d3 = {x12 , x13 , x14 , x15}.
The samples in the boundary set are the source of difficulty

of classification. They form the inconsistency of classification.
We give a metric to evaluate the monotonic consistency as

γB (D) =
|U − ∪K

i=1 BNDB (di)|
|U |

(3)

where |X| is the number of the elements in X . We call this
metric monotonic dependence of D on B. If γB (D) = 1, we say
D is completely dependent on B. The dataset is monotonically
consistent in this case. All the samples with better feature values
also obtain better decision labels. However, most classification
tasks are not consistent in real-world applications.

As to the task in Example 1, we have γB (D) = |U −
{x5 , x6} ∪ {x10 , x11}|/|U | = 11/15. Monotonic dependence
characterizes the relevance between attributes and classifi-
cation. However, this metric is sensitive to noisy samples.
For example, we just change the decision of Sample 15 as
class 1, then BN(D≤) = {x5 , . . . , x14}, and γB (D) = |U −
{x5 , x6} ∪ {x10 , x11}|/|U | = 5/15. As we know, the decisions
are usually given by different persons in different contexts; there
are many inconsistent decisions in data; therefore, a robust met-
ric is desirable in this case.

Because of inconsistency, a sample with higher values of
features does not necessarily obtain a better decision. However,
we know that a sample with larger values of features should
produce a better decision with a large probability [4], [5]. For
applicability, stochastic monotonicity should be considered to
describe monotonic classification tasks.

III. MONOTONIC CONSISTENCY METRIC

There are several kinds of uncertainty in monotonic classi-
fication, such as randomicity, fuzziness, and inconstancy. The
metric to evaluate quality of features should consider these prob-
lems. First, we introduce some definitions on rank entropy and
RMI [11], which reflects the stochastic monotonicity between
features and decision.

DeÞnition 7:Let U = {x1 , x2 , . . . , xn} and xi ∈ U and R =
{rij }n×n be an ordinal relation over U . The fuzzy ordinal set of
xi is formulated as [xi ]≤R = ri1 /x1 + ri2 /x2 + . . . + rin /xn ,

where rij is the degree of xi worse than xj . We have
�
�

�

xi > xj , rij ∈ [0, 0.5)
xi = xj , rij = 0.5

xi < xj , rij ∈ (0.5, 1].
(4)

The fuzzy dominated set of xi is a fuzzy set which dominates
xi , The membership rij reflects the magnitude of xi worse than
xj .

If we define a cut operator on the aforementioned fuzzy ordi-
nal set as rij = 0 if rij < 0.5; otherwise, rij = 1, then the fuzzy
ordinal set becomes a crisp ordinal set, as shown in Fig. 2.

DeÞnition 8:Let U be a set of objects and R = {rij }n×n be
an ordinal relation over U induced by B ⊆ A. [xi ]≤R is the fuzzy
ordinal set associated with xi . The fuzzy rank entropy of the
system 〈U,R〉 is defined as

RHR (U) = −
n�

i=1

1
n

log
|[xi ]≤R |

n
(5)

where |[xi ]≤R | =
�

j rij is the fuzzy cardinality of fuzzy set

[xi ]≤R .
RHR (U) is also written as RHB (U). As we know, 0 ≤

|[xi ]≤R | ≤ n; therefore, 0 ≤ RHR (U). In addition, assume that
R1 and R2 are two fuzzy ordinal relations on U . If R1 ⊆ R2 ,
we have RHR1 (U) ≥ RHR2 (U).

DeÞnition 9: Given U , R and S are two fuzzy or-
dinal relations on U induced by attributes B1 and
B2 . T = R ∩ S is the relation induced by B1 ∪ B2 .
That is to say [xi ]≤T = [xi ]≤R ∩ [xi ]≤S = min(ri1 , si1) /x1 +
min(ri2 , si2) /x2 + . . . + min(rin , sin ) /xn . The fuzzy rank
joint entropy of R and S is defined as

RHR∩S (U) = −
n�

i=1

1
n

log
|[xi ]≤R ∩ [xi ]≤S |

n
. (6)

It is easy to show that RHR∩S (U) ≥ 0, RHR∩S (U) ≥
RHR (U), and RHR∩S (U) ≥ RHS (U). Moreover, if R ⊆ S,
we have RHR∩S (U) = RHR (U). This analysis shows the joint
entropy of two subsets of features is no smaller than the entropy
of any of them. We can derive the following property. If B ⊆ C,
we have RHB (U) ≤ RHC (U).

DeÞnition 10:Given U , R and S are two fuzzy ordinal re-
lations induced by attributes B1 and B2 . By knowing B2 , the
fuzzy rank conditional entropy of B1 is defined as

RHR |S (U) = −
n�

i=1

1
n

log
|[xi ]≤R ∩ [xi ]≤S |

|[xi ]≤S |
. (7)

As |[xi ]≤S | ≥ |[xi ]≤R ∩ [xi ]≤S |, |[xi ]≤R ∩ [xi ]≤S |/|[xi ]≤S | ≤ 1,
then we can derive that RHR |S (U) ≥ 0. In addition,
|[xi ]≤R ∩ [xi ]≤S |/|[xi ]≤S | ≥ |[xi ]≤R ∩ [xi ]≤S |/n; therefore, we have
RHR∩S (U) ≥ RHR |S (U).

DeÞnition 11:Given U , R and S are two fuzzy ordinal rela-
tions induced by attributes B1 and B2 . The FRMI of B1 and B2
is defined as

RMIR,S (U) = −
n�

i=1

1
n

log
|[xi ]≤R | × |[xi ]≤S |

n × |[xi ]≤R ∩ [xi ]≤S |
. (8)
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Fig. 2. Membership functions of ordinal sets.

Fig. 3. (a)–(d) Toy examples of classification tasks in 2-D feature spaces.

Just like the relationship of information entropy, conditional
entropy, and MI in Shannon’s information theory, we also have

RMIR,S (U) = RHR (U) − RHR |S (U) (9)

RMIR,S (U) = RHS (U) − RHS |R (U). (10)

The aforesaid definitions give a point-wise way to define rank
entropy, rank conditional entropy, and RMI, and the entropy of
the universe can be understood as the expectation of samples’
entropy. Take xi ∈ U as an example:

RMIR,S (xi)

= − log
�
|[xi ]≤R | × |[xi ]≤S |

�
/
�
n × |[xi ]≤R ∩ [xi ]≤S |

�

= log
�
n × |[xi ]≤R ∩ [xi ]≤S |

�
/
�
|[xi ]≤R | × |[xi ]≤S |

�
.

For a set of given samples, n is a constant. Then, we just
consider θ = |[xi ]≤R ∩ [xi ]≤S |/

�
|[xi ]≤R | × |[xi ]≤S |

�
. θ can be un-

derstood as a similarity function of two fuzzy ordinal sets.

If [xi ]≤R = [xi ]≤S , RMIR,S (xi) = − log |[xi ]≤S |/n = RHS (xi),
which means the MI between R and S is equal to the rank
entropy of R or S if they are the same.

Now, we show some toy examples in Fig. 3. There are four
classification tasks that are described with two features. The
first one is a monotonically consistent classification task, while
the second one is consistent but nonmonotonic. The third one
is monotonically consistent except two noisy samples, and the
last one is a monotonic task with many inconsistent samples.

First, we consider (1) and (2). We compute the MI and RMI
between features and decision of the two tasks. As to the first
task, we obtain that MI = 0.928, and RMI = 0.723; as to the
second task, MI = 0.952, and RMI = 0.472. We can see that MI
does not vary much when the order of decision changes. It shows
that MI is not sensitive to the ordinal structures of data. However,
RMI decreases from 0.723 to 0.472. It tells us the features in the
second task are not good for monotonic classification. Compared
with MI, RMI reflects the ordinal structures of features.
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B. Min-Redundancy-and-Max-Relevance Feature Search

The aforementioned analysis introduced a feature evaluation
metric for monotonic classification. Now, we consider selecting
features based on this metric.

A straightforward way is to exhaustively calculate the quality
of feature subsets to find an optimal subset. However, this is
not feasible even given a moderate size of candidate features
because of the exponential complexity.

Some efficient algorithms were developed to overcome this
problem. Battiti [28], and Peng et al.[29] discussed two criteria,
which are called max-relevance (MR) and mRMR, respectively.
Intuitively, features of larger relevance with decision should
provide more information for classification. Therefore, the best
feature should be the one of the largest MI. This strategy is called
maximal relevance criterion (MR). Formally, MR criterion can
be written as the following formulation:

maxΥ,Υ =
1

|B|

�

ai ∈B

RMIai ,D . (14)

In essence, the MR criterion is a feature selection algorithm
based on ranking. We rank the features in the descending order
according to the RMI between single feature and decision and
then select the first k features, where k is specified in advance. It
is well known that the ranking-based algorithms cannot remove
redundancy between features because this algorithm neglects the
relevance between input variables. Sometimes, the redundancy
between features is so great that deleting some of them does
not reduce the classification information of the original data. In
this case, we should select a subset of features with the minimal
redundancy condition. That is

min(Θ),Θ =
1

|B|2
�

ai ,aj ∈B

RMIai ,aj
. (15)

Then, we get a new criterion max Φ(D,R), which is called
mRMR, by combining the two constraints:

Φ =
1

|B|

�

ai ∈B

RMIai ,D −
β

|B|2
�

ai ,aj ∈B

RMIai ,aj
(16)

where the parameter β is used to regulate the relative importance
of the MI between features and decision.

In [29], an incremental version of mRMR was developed. If a
subset B of l − 1 features has been selected in current step, now
we select the lth feature. The incremental algorithm computes
the following metric: ∀aj ∈ A − B,

Sig(aj , B,D) = RMIaj ,D −
β

l − 1

�

ai ∈B

RMIai ,aj
. (17)

The feature a maximizing Sig(a;B,D) is selected.
mRMR calculates the significance of each feature one by

one, and finally, we get the rank of the features. Then, some
classification algorithm should be introduced to check the best
k features with respect to the classification performance via
cross validation.

In the incremental algorithm, we should compute the MI
between the remaining m − (l − 1) features and decision at-

TABLE I
DATA DESCRIPTION

tribute. Moreover, we also require calculating the MI between
the remaining m − (l − 1) and the selected l − 1 features. Thus,
the total computational cost is m − (l − 1) + (m − (l − 1)) ×
(l − 1) = (m − l + 1) × l in this step. In fact, this algorithm
just uses the MI between features pairs, as well as the MI be-
tween features and decision. Therefore, we can compute and
store the matrix of MI Mij in advance, where Mij is the MI be-
tween feature pairs. In this case, the total computational cost is
m + m × m, where m computes MI between m single features
and decision, while m × m computes MI between feature pairs.

V. EXPERIMENTAL ANALYSIS

In this section, we present some experiments on real-world
tasks to test the proposed technique. We compare our metrics
with the dependence functions that are defined in dominance
rough sets and fuzzy preference rough sets to show the robust-
ness of RMI. We also compare RMI with MI and fuzzy mutual
information (FMI) to show the effectiveness of these metrics in
measuring monotonic consistency.

We introduce two monotonic classifiers, i.e., OLM [12] and
OSDL [4], [23], to calculate the classification performance of
the selected features. These algorithms are now implemented in
Weka [51].

Here, mean absolute error (MAE) is introduced to evaluate
decision performance, which is computed as

MAE =
1
N

�N

i=1
|ŷi − yi | (18)

where N is the number of samples in the test set, 
yi is the output
of the algorithm, and yi is the real output of the ith sample.
Moreover, we also compute the classification error rate (CE) of
models.

Fourteen monotonic tasks are collected from the University of
California, Irvine, machine learning repository and other web-
pages [57]. The detailed information about these datasets is
given in Table I.

We randomly select three tasks, including Adult, Pasture, and
Wine Quality-red, to test the robustness of RMI and monotonic
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Fig. 5. Metric of monotonic consistency computed at different noise levels (Adult).

Fig. 6. Metric of monotonic consistency computed at different noise levels (Pasture).

dependence that is defined in dominance rough sets and fuzzy
preference rough sets. We calculate dependence or MI between
decision and each single feature based on the raw datasets.
Moreover, we randomly draw k%(k= 5, 10, 15, and 20) samples
from the raw datasets and replace their class labels with arbitrary
candidates. These samples are considered to be class noisy and
are put back to the raw datasets. Now, we observe the variation
of dependence or MI.

If the metric is robust, we expect that the value variation of
metric will be small. Thus, the difference of metrics that are
computed at different levels of noise would be small enough.
Monotonic dependence (PRS), monotonic fuzzy dependence
(FPRS), RMI, and FRMI computed with the raw datasets and
noisy datasets are shown in Figs. 5– 7.

Observing the curves Fig. 5, we see that PRS changes a lot at
different levels of noise. The metric values are completely dif-
ferent from the value that is computed with the raw dataset when
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Fig. 7. Metric of monotonic consistency computed at different noise levels (Wine Quality-red).

5% noisy samples are added in Adult. As to FPRS, although the
metric values also vary, it seems that this metric is more robust
than PRS. RMI and FRMI are far more robust than PRS and
FPRS as the metric values are stable when noisy samples are
added. The same conclusions can also be drawn from Figs. 6
and 7.

Now, we compare the classification performance of different
feature subsets that are selected with six metric functions: MI,
FMI, RMI, FRMI, PRS, and FPRS. We rank the features with the
descending order of these metric values and added the top fea-
tures one by one. In this process, we compute the classification
performances of the corresponding features based on fivefold
cross validation. Two metrics of classification performance are
calculated: CE and MAE. The best classification performance
and the number of the corresponding subsets of features are
given in Tables II and III, where raw is the performance of the
raw datasets. Because of the limitation of space, here, we just
give the average performance of cross validation in these tables.

We first compare the performances that are computed before
and after feature selection. We see that both the CE and MAE
decrease after some features are reduced from the raw datasets.
As to some tasks like Bankruptcyrisk and Cardiotocography,
feature selection significantly improves the classification.

RMI, FRMI, PRS, and FPRS are the evaluation functions that
consider the ordinal structures of features and decision, while MI
and FMI do not reflect the monotonic consistency. We can see
that most tasks produce the better classification performances
after attribute reduction based on RMI, FRMI, PRS, and FPRS
as to OLM and OSDL. Although MI and FMI show good per-
formances in feature evaluation for general classification tasks,
they are worse than RMI and FRMI and even worse than PRS

and FPRS. In addition, RMI and FRMI are better than PRS and
FPRS in most cases.

Figs. 8 and 9 present the curves of error rate that varies
with the number of the selected features. We consider six tasks
in these figures. As to OLM, the CEs decrease when the first
several features are used, and then, the error rates increase after
they arrive at their minimums. This trend is the same as those
in feature selection for general classification tasks [58], [59].
The first several features are useful for classification learning.
However, too many selected features may lead to the issue of
overfitting. Thus, a proper number of features are very important
to obtain good classification performance.

As to OSDL, no consistent rule can be drawn from these
curves. Although feature reduction improves classification per-
formance of OSDL, these error rates do not decrease with the
addition of new features. It is easy to select the best features for
OSDL.

Rank-based feature selection does not consider the redundant
information between the selected features, which may result in
superfluous features. The strategy of mRMR consider not only
the relevance between decision and features but the relevance
between features as well. The features high relevant to decision
and low correlated with the selected features are considered to
be useful.

Now, we compare the features that are selected with mRMR
strategy, where MI, FMI, RMI, and FRMI are all employed to
evaluate the candidate features. As mentioned earlier, mRMR
just outputs a rank of candidate features. We should introduce
other classification algorithms to validate the feature subsets.
Here, we also consider OLM and OSDL. The performances of
the best subsets of features are given in Table IV.




