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Qinghua Hu, Member, IEEEWeiwel Pan, Lei Zhang, Member, IEEEDavid Zhang, Fellow, IEEE
Yanping Song, Maozu Guo, and Daren Yu

Abstract—Monotonic classi cation is a kind of special task
in machine learning and pattern recognition. Monotonicity con-

straints between features and decision should be taken into ac-
count in these tasks. However, most existing techniques are not

able to discover and represent the ordinal structures in monotonic
datasets. Thus, they are inapplicable to monotonic classi cation.

and there are monotonicity constraints between features and
decision classeswhere z < 2" [L_f (&) < f(z [1]. Monotonic
classification isakind of common tasksin medical analysis, so-
cial, and behavioral sciences[2]. Such problems have attracted
increasing attention from the domains of machine learning and

Feature selection has been proven effective in improving classi - intelligence data analysis [3]-{5].

cation performance and avoiding over tting. To the best of our

knowledge, no technique has been specially designed to select fe

tures in monotonic classi cation until now. In this paper, we in-
troduce a function, which is called rank mutual information, to

The previouswork on monotonic classification can beroughly

givided into two groups. One attempts to construct a the-

oretic framework for monotonic classification, including the

evaluate monotonic consistency between features and decision indominance rough set model [6]-{10] and the ordinal entropy

monotonic tasks. This function combines the advantages of domi-

nance rough sets in re ecting ordinal structures and mutual infor-
mation in terms of robustness. Then, rank mutual information is
integrated with the search strategy of min-redundancy and max-

relevance to compute optimal subsets of features. A collection of

model [11], whereas the other is dedicated to developing algo-
rithms for learning decision models from samples [12]-{15].
In 1999, Greco et al. first introduced dominance relations
into rough sets and proposed the model of dominance rough

numerical experiments are given to show the effectiveness of the Sets. This model built a formal framework to study mono-

proposed technique.

Index Terms—Feature selection, fuzzy ordinal set, monotonic
classi cation, rank mutual information (RMI).

|. INTRODUCTION

LASSIFICATION tasks can be divided into two groups:
C nominal classification and ordinal classification. As to
nominal classification [52], [53], [56], thereisno ordinal struc-
ture among different decision values. For example, werecognize
different diseases according to the symptoms of patients. How-
ever, as to ordina classification (which is aso called ordinal
regression) [1], [3], [4], [55], we should consider the ordinal
relationship between different class labels, such as the severity
levels of adisease {dlight, medium, and severe}. Furthermore,
monotonic classification is a class of special ordina classifica-
tion tasks, where the decision values are ordinal and discrete,
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tonic classification. After that, this model was extensively dis-
cussed and generalized. On the other hand, Ben-David extended
the classical decision tree agorithm to monotonic classifica-
tion in 1995. Since then, a collection of decision tree algo-
rithms have been developed for this problem [16]-{20]. In ad-
dition, Ben-David also extended the nearest neighbor classifier
to monotonic tasks and designed an ordinal learning model
(OLM) [22]. In 2003, Cao-Van introduced ordinal stochastic
dominance learner (OSDL) based on associated cumulative
distribution. In 2008, Lievens et al. presented a probabilistic
framework that served as the base of instance-based algorithms
to solve the supervised ranking problems [23]. In addition, in
2008, Duivesteijn and Feelders proposed a modified nearest
neighbor algorithm for the construction of monotone classi-
fiers from data by monotonizing training data. The relabeled
data were subsequently used as the training set by a modified
nearest neighbor algorithm [14]. Recently, support vector ma-
chinesand other kernel machines have al so been adapted to such
tasks[24], [25]. Based on the af orementioned survey, we can see
that monotonic classification isbecoming ahot topicin machine
learning.

As we know, feature selection plays an important role in
improving classification performance and speeding up train-
ing [26], [27]. A great number of feature selection algorithms
have been designed for classification learning until now. The
main differences between these techniques lie in the met-
rics that are used to evaluate the quality of candidate fea-
tures and search strategies to find optimal solutions in terms
of the used metric. Mutual information (MI) [28]-{31], de-
pendence [32]-36], consistency [37], [38], [54], distance [39],
and classification margin [40]-{42] were introduced or devel-
oped as metrics of feature quality in feature selection. In addi-
tion, after defining the optimization objectives, a search strategy
should be designed to find the optimal solution. Greedy search,
heuristic search, branch and bound, genetic optimization, and
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other intelligent search algorithms are used in feature selection
[43]{45].

Although alot of algorithmswere devel oped for feature selec-
tion, little effort has yet to be devoted to design feature selection
algorithms for monotonic classification. As different consis-
tency assumptions are taken for monotonic classification and
nominal classification, the feature evaluation functions that are
developed for nominal classification cannot be directly applied
to monotonic classification because the metricsin nominal clas-
sification do not consider the monotonicity constraints. As a
result, a feature producing a large value of feature quality may
not be useful for enhancing the monotonicity of monotonetasks.
Thus, new evaluation functions should be devel oped for thiskind
of special tasks. Kamishimaand Akaho [46] and Baccianella et
al. [47] designed afeature sel ection procedurefor ordinal classi-
fication, respectively. However, the feature evaluation functions
that are used in these algorithms do not reflect the monotonicity
between features and decision. Therefore, they are not appli-
cable to monotonic classification. In 2006, Lee et al.improved
the dependence function that is defined in dominance rough sets
and used it to attribute reduction for monotonic classification. In
addition, Xu et al.gave another framework of attribute reduction
based on evidence theory [48]. Although dependence that is de-
fined in dominance rough sets can reflect the ordinal structures
in monotonic data, dominance rough sets are very sensitive to
noisy information. The evaluation function may vary quite a bit
if there are several inconsistent samplesin the datasets[49]. We
should design arobust metric of feature quality, which can also
discover ordinal structures of monotone tasks.

In 2010, Hu et al. introduced two new attribute metrics, i.e.,
rank mutual information (RMI) and fuzzy rank mutual informa-
tion (FRMI), to compute the monotonic consistency between
two random variables [11]. However, they did not discuss the
issue of feature selection for monotonic classification. In ad-
dition, no experimental analysis was described to show the
effectiveness of the proposed measure. As we know, MI in
Shannon’s information theory is widely used in feature eval-
uation for nominal classification tasks and its effectiveness has
been verified in applications [26]-{30], [50]. Naturally, we also
want RMI and FRMI to be powerful in evaluating and select-
ing monotonic features. Therefore, in this paper, we first dis-
cuss the properties of rank entropy and RMI in evaluating fea-
tures, and then we design feature selection algorithms based
on these metrics and conduct experiments to test them. We
integrate RM| with the search strategy of min-redundancy and
max-relevance (MRMR). Thus, an effective algorithm for mono-
tonic feature selection is constructed. Some numerical experi-
ments are presented to show the effectiveness of the proposed
technique.

Therest of thispaper isorganized asfollows. First, we present
the preliminaries on monotonic classification and dominance
rough sets in Section 11; then, we show the definitions of RMI
and FRMI and discusstheir propertiesin Section I11. Section 1V
gives the feature selection algorithms for monotonic classifica-
tion. Numerical experimentsare presented in Section V. Finaly,
conclusions and future work are given in Section VI.
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Il. PRELIMINARIES ON MONOTONIC CLASSIFICATION

The following definitions can be found in [6] and [7].

Debnition 1:Let [, A, D[be aset of classification dataset,
where U = {z;}}_, isthe set of samples, A = {a;}]", isthe
set of attributes, and D is the decision of the samples. The
vauedomainof Dis{d,,ds,...,dx}. If Disnominal, we say
[, A, D[s a nominal classification task. If there are ordinal
structures between thevalues of decision, d; < dy < - -+ < d,
wesay [, A, Dsanordinal classificationtask. Letv(z, A) de-
note the value vector of samplex on A, and let f bethe decision
function. If L1 v(x, A) < v(z5 A),wehave f(z) < f(2b,
and then, we say [, A, D [is amonotonic classification task.

In this paper, we focus on monotonic classification tasks.

Debpnition 2 Given amonotonic classificationtask [T, A, D[]
B [A] we associate ordinal relations with the attributes and
decision as

1) B3 = {(zi,z))|v(zi, @) < v(zj,a)), la)d CB};

2) Ry, = {(xi,x;) x Ulv(zi, D) < v(z;, D)}

Debpnition 3:Given [, A, DB Al [x] U, we define
the following subsets of samples:

D) [2:]5 = {x; CON(z,2;) CHGY:

2) [a;]p = {w; CON(ws,2;) CEG Y

which are called B-dominating set and D-dominating set of
x;, respectively.

Given [, A, D[B [CA] z;,x; [0, the following conclu-
sions hold:

1) k% CHE;

2) [¢;]5 Clz)3; and

3 if w; L3,
;1512 O3}

Debnition 4:Given [, A, D[1B [CA] X [UI The lower
and upper approximations of X in terms of B are defined as
follows:

1) R5X = {z [|[z]; CXT};

2 REX ={x CO|[z]; n X B [}

It is easy to obtain the following conclusions:

1) R5X X1 CREX;

2) R3U [ R IO

3) R; [XI= [BEX, Ry [XI= [REX;

4)if X (YICIR5X CREY, R5X CREY.

Debnition 5:Given [, A, DB [“Al d; istheith class, the
boundary of d; are defined as

[z;]3 and [z;]5 =

BN(d¥) = R5ds — R5dT. )

Debnition 6:Given [, A, DB [CAland{d;,ds,...,dx}
is the value domain of D. The boundary of classification D is
defined as

BN @) @)

i=1

Similarly, we can adso define BN (d>) and BN(D=). It
is easy to derive that BN (d7) = BN(d7.,) and BN (D=) =

BN (D=). Moreover, we define Ry d; = R5ds n R5dz.
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Fig. 1. Toy example of dominance rough sets.

Example 1:A set of objects is divided into three levels ac-
cording to the attribute B, which is presented in Fig. 1, where
x e and g stand for samples coming from classes 1, 2, and 3,
respectively.

Accordingtotheaforesaid definitions, weobtainthat Rp di =
{1‘1 , L9, T3, $4}, BN(CZQS) = {1‘5, 1‘6}, RidQ = {.737, s, J,‘g},
BN(d2S) = {z10,211}, and Rpds = {x12, 213, T14, T15}-

The samples in the boundary set are the source of difficulty
of classification. They form the inconsistency of classification.
We give ametric to evaluate the monotonic consistency as

N 51 BN Dy (d;)|
U]

v (D) 3

where | X| is the number of the elements in X. We cal this
metric monotonic dependenceof D on B. If v5(D) = 1, wesay
D iscompletely dependent on B. The dataset is monotonically
consistent in thiscase. All the sampleswith better feature values
also obtain better decision labels. However, most classification
tasks are not consistent in real-world applications.

As to the task in Example 1 we have vy (D) =|U —
{a5, w6} 10, 211}/|U] = 11/15. Monotonic dependence
characterizes the relevance between attributes and classifi-
cation. However, this metric is sensitive to noisy samples.
For example, we just change the decision of Sample 15 as
class 1, then BN (D=) = {z5,...,z14}, and y5 (D) = |U —
{a5, w6} 10, 211} /|IU| = 5/15. Asweknow, the decisions
areusually given by different personsin different contexts; there
aremany inconsistent decisionsin data; therefore, arobust met-
ricis desirablein this case.

Because of inconsistency, a sample with higher values of
features does not necessarily obtain a better decision. However,
we know that a sample with larger values of features should
produce a better decision with a large probability [4], [5]. For
applicability, stochastic monotonicity should be considered to
describe monotonic classification tasks.

I1l. MONOTONIC CONSISTENCY METRIC

There are severa kinds of uncertainty in monotonic classi-
fication, such as randomicity, fuzziness, and inconstancy. The
metric to evaluate quality of features should consider these prob-
lems. First, we introduce some definitions on rank entropy and
RMI [11], which reflects the stochastic monotonicity between
features and decision.

Debnition 7Let U = {1, 22, ..., 2, }and x; and R =
{ri;j }nxn beanordina relation over U. Thefuzzy ordina set of
xz; iIsformulated as ["Lz]lsz =T /1'1 + 79 /(L’Q + ..o+ Tin /(L’n,
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where r;; isthe degree of z; worse than z;. We have

Ti > Tj, Tij E[D,O5)
T; = Tj, Tyj = 0.5 (4)
T; < Tj, Tij m5, 1}

Thefuzzy dominated set of x; isafuzzy set which dominates
x;, The membership r;; reflects the magnitude of z; worse than
Zj.
If we define a cut operator on the af orementioned fuzzy ordi-
nal setasr;; = 0if r;; < 0.5; otherwise, r;; = 1, thenthefuzzy
ordinal set becomes acrisp ordinal set, as shown in Fig. 2.

Debpnition 8:Let U be a set of objectsand R = {r;; }, <, be
an ordinal relation over U induced by B[4l [x;]; isthefuzzy
ordinal set associated with x;. The fuzzy rank entropy of the
system [, Rk defined as

n 1 ; =
RHp(U) ==+ 1og 1115l ©)

i=1 n n
where |[z;]5| = i is the fuzzy cardindlity of fuzzy set

2]

IézHR(U) is also written as RHp (U). As we know, 0 <
|[z;]5] < n; therefore, 0 < RHR (U). In addition, assume that
R, and R, are two fuzzy ordina relationson U. If Ry [R},
wehave RHy, (U) = RHg, (U).

Debnition 9: Given U, R and S are two fuzzy or-
dina relations on U induced by attributes B; and
By, T=RnS is the relation induced by B, [B.
That is to say [(Ez]? = ["El]ﬁ n [fﬂl]f = min(ril,sil) /xl +
min(r;e, 8;2) /22 + ...+ min(r,, Sin ) /2. The fuzzy rank
joint entropy of R and S is defined as

RHps(U) =—
i=1
It is easy to show that RHrs(U) =0, RHpns(U) =
RHR(U), and RHr,s(U) = RHs(U). Moreover, if R [S]
wehave RHpns(U) = RHp(U). Thisanaysis showsthejoint
entropy of two subsets of featuresis no smaller than the entropy
of any of them. We can derivethefollowing property. If B [C]
wehave RHg (U) < RH¢ (U).
Debpnition 10:Given U, R and S are two fuzzy ordinal re-
lations induced by attributes B, and B;. By knowing B, the
fuzzy rank conditional entropy of B; isdefined as

" zi]5 0 (@5
RHps(U) == —log MeiJ 0 L5 ]l}Ex'}S[I HY
i=1 tls

)

As |[zil5] = |[z:]7 0 [@]5], =5 0 @515 < 1,
then we can derive that RHpg(U)=0. In addition,
[[z:]5 0 [z:]51/1[:5] = |[@:]5 n [2:]5]/n; therefore, we have
RHpns(U) = RHps(U).

Debnition 11:Given U, R and S are two fuzzy ordina rela-
tionsinduced by attributes B; and B,. The FRMI of By and B;
is defined as

" |[z:]7] > |[:]5]

RMips(U)=—  —log o®

R A N el
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(a) crisp ordinal set

Fig. 2. Membership functions of ordinal sets.

Fig. 3. (8)—(d) Toy examples of classification tasks in 2-D feature spaces.

Just like the relationship of information entropy, conditional
entropy, and M1 in Shannon’sinformation theory, we a so have

()
(10)

RMIp s(U) = RHR(U) — RHR)s(U)
RMIp s(U) = RHs(U) = RHgz (U).

The af oresai d definitions give a point-wise way to define rank
entropy, rank conditional entropy, and RMI, and the entropy of
the universe can be understood as the expectation of samples
entropy. Take x; as an example:

RMIg s (i)
= —log |[z]3] % |[zi]5] / n>|[z:]F 0 @3]
=log nx|[z]f n [z5] / @]zl < =5 -
For a set of given samples, n is a constant. Then, we just
consider 0 = |[z;]5 n [z:]51/ |l@:]5] > |[=]5] - 6 can be un-
derstood as a similarity function of two fuzzy ordina sets.
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0 0.2
(b) fuzzy ordinal set
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If [2;]% = [z:]5, RMIg s(z;) = —log|[z;]5]/n = RHs (),
which means the M| between R and S is equa to the rank
entropy of R or S if they are the same.

Now, we show some toy examples in Fig. 3. There are four
classification tasks that are described with two features. The
first oneis amonotonically consistent classification task, while
the second one is consistent but nonmonotonic. The third one
is monotonically consistent except two noisy samples, and the
last one is a monotonic task with many inconsistent samples.

First, we consider (1) and (2). We compute the M| and RM|
between features and decision of the two tasks. As to the first
task, we obtain that Ml = 0.928, and RMI = 0.723; as to the
second task, Ml = 0.952, and RMI = 0.472. We can seethat M|
doesnot vary much when the order of decision changes. It shows
that M1 isnot sensitivetothe ordinal structuresof data. However,
RMI decreasesfrom 0.723t0 0.472. It tellsusthe featuresin the
second task are not good for monotonic classification. Compared
with MI, RMI reflects the ordinal structures of features.
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B. Min-Redundancy-and-Max-Relevance Feature Search

The aforementioned analysis introduced a feature evaluation
metric for monotonic classification. Now, we consider selecting
features based on this metric.

A straightforward way isto exhaustively cal culate the quality
of feature subsets to find an optimal subset. However, this is
not feasible even given a moderate size of candidate features
because of the exponential complexity.

Some efficient algorithms were developed to overcome this
problem. Battiti [28], and Peng et al.[29] discussed two criteria,
which are called max-relevance (MR) and mRMR, respectively.
Intuitively, features of larger relevance with decision should
provide more information for classification. Therefore, the best
feature should bethe oneof thelargest M. Thisstrategy iscalled
maximal relevance criterion (MR). Formally, MR criterion can
be written as the following formulation:

1
maxY,T = —
|B| a; [B]

In essence, the MR criterion is a feature selection algorithm
based on ranking. We rank the features in the descending order
according to the RMI between single feature and decision and
then select thefirst k features, wherek is specified in advance. It
iswell known that the ranking-based algorithms cannot remove
redundancy between featuresbecausethisal gorithm neglectsthe
relevance between input variables. Sometimes, the redundancy
between features is so great that deleting some of them does
not reduce the classification information of the original data. In
this case, we should select a subset of features with the minimal
redundancy condition. That is

!
~IBP

RMl,. p. (14

min(©), 0 RMIg, 4, - (15

a;,a; LB]
Then, we get a new criterion max ®(D, R), which is called
mMRMR, by combining the two constraints:

1 g
P=— RMl,, p — =5 RMI,; o
1B ' '

16
|B|2 a;,a; [B] ( )

a; [B1

wherethe parameter 3 isused to regulatetherel ativeimportance
of the M1 between features and decision.

In[29], an incremental version of MRMR was developed. If a
subset B of | — 1 features has been selected in current step, now
we select the th feature. The incremental algorithm computes
the following metric: [a)] CA— B,

B

Sig((IJ',B,D) = RMI(1J<D -

1 RMI(L] ,aj (17)

a,IEI

o~

Thefeature a maximizing Sig(a; B, D) is selected.

MRMR calculates the significance of each feature one by
one, and finaly, we get the rank of the features. Then, some
classification algorithm should be introduced to check the best
k features with respect to the classification performance via
cross validation.

In the incremental algorithm, we should compute the Ml
between the remaining m — (I — 1) features and decision at-
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TABLE
DATA DESCRIPTION

Data set Instances Features Classes
Adult 48842 14 2
Ailerons 13750 41 3
Auto MPG 398 8 3
Australian Credit 690 15 2
Bankruptcyrisk 36 12 3
Cardiotocography 2126 21 3
Credit Approval 690 14 2
Fault 540 52 5
German Credit 1000 20 2
Housing 506 13 4
Pasture 36 22 3
Triazines 186 61 3
Windsor Housing 546 11 4
Wine Quality-red 1599 11 6

tribute. Moreover, we also require calculating the MI between
theremainingm — (I — 1) andtheselected | — 1 features. Thus,
the total computational costism —(I—1)+ (m—(1—1)) %
(I—1) = (m—1+1)x1inthis step. In fact, this algorithm
just uses the M1 between features pairs, as well as the MI be-
tween features and decision. Therefore, we can compute and
store the matrix of M1 A;; in advance, where M;; isthe M1 be-
tween feature pairs. In this case, the total computational cost is
m + m X m, where m computes M| between m single features
and decision, whilem > m computes M| between feature pairs.

V. EXPERIMENTAL ANALYSIS

In this section, we present some experiments on real-world
tasks to test the proposed technique. We compare our metrics
with the dependence functions that are defined in dominance
rough sets and fuzzy preference rough sets to show the robust-
ness of RMI. We also compare RMI with M| and fuzzy mutual
information (FMI) to show the effectiveness of these metricsin
measuring monotonic consistency.

We introduce two monotonic classifiers, i.e.,, OLM [12] and
OSDL [4], [23], to calculate the classification performance of
the selected features. These algorithms are now implemented in
Weka[51].

Here, mean absolute error (MAE) is introduced to evaluate
decision performance, which is computed as

1 N
where N isthe number of samplesin thetest set, ; isthe output
of the algorithm, and y; is the real output of the ith sample.
Moreover, we also compute the classification error rate (CE) of
models.

Fourteen monotonic tasksare collected from the University of
Cdlifornia, Irvine, machine learning repository and other web-
pages [57]. The detailed information about these datasets is
givenin Tablel.

We randomly select threetasks, including Adult, Pasture, and
Wine Quality-red, to test the robustness of RMI and monotonic

(18)



HU et al. FEATURE SELECTION FOR MONOTONIC CLASSIFICATION

Fig. 5.

Fig. 6.

dependence that is defined in dominance rough sets and fuzzy
preference rough sets. We cal culate dependence or M1 between
decision and each single feature based on the raw datasets.
Moreover, werandomly draw £%(k =5, 10, 15, and 20) samples
fromtheraw datasetsand replacetheir classlabel swith arbitrary
candidates. These samples are considered to be class noisy and
are put back to the raw datasets. Now, we observe the variation
of dependence or M.

75

Metric of monotonic consistency computed at different noise levels (Adult).

Metric of monotonic consistency computed at different noise levels (Pasture).

If the metric is robust, we expect that the value variation of
metric will be small. Thus, the difference of metrics that are
computed at different levels of noise would be small enough.
Monotonic dependence (PRS), monotonic fuzzy dependence
(FPRS), RMI, and FRMI computed with the raw datasets and
noisy datasets are shown in Figs. 5-7.

Observing the curves Fig. 5, we see that PRS changes alot at
different levels of noise. The metric values are completely dif-
ferent from the value that is computed with the raw dataset when
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Fig. 7.

5% noisy samples are added in Adult. Asto FPRS, although the
metric values also vary, it seems that this metric is more robust
than PRS. RMI and FRMI are far more robust than PRS and
FPRS as the metric values are stable when noisy samples are
added. The same conclusions can aso be drawn from Figs. 6
and 7.

Now, we compare the classification performance of different
feature subsets that are selected with six metric functions: Ml,
FMI, RMI, FRMI, PRS, and FPRS. Werank thefeatureswith the
descending order of these metric values and added the top fea-
tures one by one. In this process, we compute the classification
performances of the corresponding features based on fivefold
cross validation. Two metrics of classification performance are
calculated: CE and MAE. The best classification performance
and the number of the corresponding subsets of features are
givenin Tables Il and I11, where raw is the performance of the
raw datasets. Because of the limitation of space, here, we just
givethe average performance of crossvalidation in thesetables.

We first compare the performances that are computed before
and after feature selection. We see that both the CE and MAE
decrease after some features are reduced from the raw datasets.
As to some tasks like Bankruptcyrisk and Cardiotocography,
feature selection significantly improves the classification.

RMI, FRMI, PRS, and FPRS are the eval uation functions that
consider theordinal structuresof featuresand decision, while M|
and FMI do not reflect the monotonic consistency. We can see
that most tasks produce the better classification performances
after attribute reduction based on RMI, FRMI, PRS, and FPRS
asto OLM and OSDL. Although MI and FMI show good per-
formances in feature evaluation for general classification tasks,
they are worse than RMI and FRMI and even worse than PRS
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Metric of monotonic consistency computed at different noise levels (Wine Quality-red).

and FPRS. In addition, RMI and FRMI are better than PRS and
FPRS in most cases.

Figs. 8 and 9 present the curves of error rate that varies
with the number of the selected features. We consider six tasks
in these figures. As to OLM, the CEs decrease when the first
several features are used, and then, the error rates increase after
they arrive at their minimums. This trend is the same as those
in feature selection for general classification tasks [58], [59].
The first several features are useful for classification learning.
However, too many selected features may lead to the issue of
overfitting. Thus, aproper number of featuresare very important
to obtain good classification performance.

As to OSDL, no consistent rule can be drawn from these
curves. Although feature reduction improves classification per-
formance of OSDL, these error rates do not decrease with the
addition of new features. It is easy to select the best features for
OSDL.

Rank-based feature sel ection does not consider the redundant
information between the selected features, which may result in
superfluous features. The strategy of mMRMR consider not only
the relevance between decision and features but the relevance
between features as well. The features high relevant to decision
and low correlated with the selected features are considered to
be useful.

Now, we compare the features that are selected with mMRMR
strategy, where M1, FMI, RMI, and FRMI are all employed to
evaluate the candidate features. As mentioned earlier, mMRMR
just outputs a rank of candidate features. We should introduce
other classification algorithms to validate the feature subsets.
Here, we also consider OLM and OSDL. The performances of
the best subsets of features are given in Table 1V.






