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Communication Between Information Systems
Using Fuzzy Rough Sets

E. C. C. Tsang, Changzhong Wang, Degang Chen, Congxin Wu, and Qinghua Hu

Abstract—Communication between information systems is a ba-
sic problem in granular computing, and the concept of homomor-
phism is a useful mathematical tool to study this problem. In this
paper, some properties of communication between information sys-
tems based on fuzzy rough sets are investigated. The concepts of
fuzzy relation mappings between universes are first proposed in
order to construct a fuzzy relation of one universe according to
the given fuzzy relation on the other universe. The main proper-
ties of the mappings are studied. The notions of homomorphism
of information systems based on fuzzy rough sets are then pro-
posed, and it is proved that properties of relation operations in the
original information system and structural features of the system,
such as approximations of arbitrary fuzzy sets and attribute re-
ductions, are guaranteed in its image system under the condition
of homomorphism.

Index Terms—Attribute reduction, fuzzy relation mappings,
fuzzy rough sets, homomorphism, information systems.

I. INTRODUCTION

INFORMATION systems, which are also called knowledge
representation systems, are formalisms to represent knowl-

edge of some objects in terms of attributes and their values. Over
the past few decades, many topics on information systems have
been widely investigated, which include some successful ap-
plications in information processing, decision analysis, process
control, and knowledge discovery [2]–[4], [6]–[20], [25]–[37],
[39]–[45], [47]–[50]. Among these application topics, commu-
nication between information systems is an interesting and im-
portant one in the framework of granular computing [6], [28].
In light of the diversity of information systems, it is sometimes
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necessary to transmit information between information systems.
For example, analog and digital conversion in signal processing,
data fusion [16], [27], and equivalent attribute reductions and
rule extractions [20], [38] need to handle information transfor-
mations. These problems motivate us to study the relationship
between information systems.

Communication is directly related to the issue of transforma-
tions of information systems while preserving their basic proper-
ties. More formally, we propose the problem as follows: How to
represent information transferred between different information
systems. As explained in [6] and [28], communication allows
one to translate the information contained in one granular world
into the granularity of another granular world and thus pro-
vides a mechanism to exchange information with other granular
worlds. From the mathematical viewpoint, this kind of com-
munication can be explained as comparing some structures and
properties of different information systems via mappings, which
are useful tools to study the relationship between information
systems. The notion of homomorphism based on rough sets [24],
which was introduced by Grzymala-Busse in [9], was used to
study information communication in [10]. In fact, a homomor-
phism can be viewed as a special mapping between information
systems, and the notion of homomorphism on information sys-
tems is useful in aggregating sets of objects, attributes, and
descriptors of the original system [10], [20], [28]. However, the
study on the communication between information systems by
the notion of homomorphism has not gained enough attention.
Up to now, there are only a few research works that focus on
this topic. In [10], Grzymala-Busse depicted some conditions
which make some important attributes to be selective in terms
of endomorphism of a complete information system. In [20],
the features of superfluousness and reducts of complete infor-
mation systems under some homomorphism is discussed. The
above two pieces of work are both performed in the framework
of Pawlak’s rough sets [24], [25] and are mainly concentrated
on the problem of attribute reduction under homomorphism.
They did not discuss the issue of set approximations. We know
that set approximations and attribute reductions in information
systems are central notions in decision making, data analysis,
reasoning about data, and other subfields of artificial intelli-
gence [1]–[5], [12]–[19], [21]–[26], [30]–[37], [39]–[46]. For
these reasons, Wang et al. further investigated some homomor-
phic properties of set approximations and attribute reductions in
information systems based on binary relations and proved that
attribute reductions in the original system and image system
are equivalent to each other under the condition of homomor-
phism [38]. It is noted that their studies are only restricted to the
generalized rough sets based on binary relations.
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In some situations, because of noises, inaccuracy, and human
subjectivities, the boundaries of some attribute values are vague
or ambiguous. For instance, low inflation rate, high pressure,
and medium income are just a few illustrative cases. On the
other hand, the values of some attributes in information systems
could be real-valued or continuous. This kind of information
system is quite different from the information system with dis-
crete attribute values [38]. The method to study the commu-
nication between information systems with discrete attributes
is not directly suitable to deal with continuous attributes. Nu-
merical attributes can be segmented into several intervals with
discretization algorithms [23] and then handled using the above
methods, but the quality of corresponding results depends on
discretization in this case. As argued in [46], discretization al-
gorithms always lead to information loss, and this may influence
the final decision results. In order to directly handle this type
of information systems, a continuous attribute can be fuzzified
by using the similarity degree of real values or by defining a
mapping for such an attribute to induce a fuzzy binary rela-
tion [3]–[8], [11], [13]–[16], [26]–[32], [35], [39], [46]. How to
investigate information communications between information
systems with continuous attributes is the problem we would
like to address in this paper.

The theory of fuzzy rough sets [5], as a generalization of
classical rough sets [24], [25], has the capability of utiliz-
ing databases with vagueness and fuzziness by making use
of the similarity degree of attribute values. This theory has
been demonstrated to be useful in solving a variety of prob-
lems [4], [8], [11]–[15], [26], [27], [35], [39]. In this paper, we
introduce fuzzy rough sets as a basic tool to study the commu-
nication between information systems and represent some new
contributions to the development of this theory. By Zadeh’s ex-
tension principle, we develop a method to define a fuzzy binary
relation on a universe in terms of a fuzzy relation on another
universe. In this sense, our method is a mechanism for com-
municating between two information systems. We then define
the concepts of homomorphism between information systems
based on fuzzy binary relations. Under the condition of ho-
momorphism, some characteristics of relation operations in the
original system and some structural features of the system, such
as set approximations and attribute reductions, are guaranteed
in its image system.

The remainder of this paper is organized as follows. In
Section II, we review the relevant concepts in rough set the-
ory. In Section III, we present the definitions of fuzzy relation
mappings and investigate their properties. In Section IV, we in-
troduce the concepts of homomorphism between information
systems based on fuzzy binary relations and study their proper-
ties. Conclusions are drawn in Section V.

II. PRELIMINARIES

This section mainly reviews some basic notions of rough and
fuzzy rough sets related to this paper.

A. Rough Sets

An information system is a pair IS = (U,C), where U =
{x1 , x2 , . . . , xn} is a nonempty finite set of objects and C =
{a1 , a2 , . . . , am} is a nonempty finite set of attributes. With
every subset of attributes B ⊆ C, we associate a binary relation
IND(B), which is defined as

IND(B) = {(x, y) : a(x) �= a(y),∀a ∈ B}.

IND(B) is obviously an equivalence relation and IND(B) =
∩a∈B IND({a}). By [x]B , we denote the equivalence class of
IND(B) including x. For any subset X ⊆ U,BX = {x ∈ U :
[x]B ⊆ X} and BX = {x ∈ U : [x]B ∩ X �= �} are called
B-lower and upper approximations of X in IS, respectively.

An attribute a ∈ B ⊆ C is superfluous in B if IND(B) =
IND(B − {a}); otherwise, a is indispensable in B. The collec-
tion of all indispensable attributes in C is called the core of IS.
We say that B ⊆ C is independent in IS if every attribute in B
is indispensable in B. B ⊆ C is called a reduct in IS if B is
independent and if IND(B) = IND(C).

A decision system is a pair DIS = (U,C ∪ {d}), where d is
the decision attribute, and C is a condition attribute set. The
positive region of d relative to C is defined as

POSC (d) = ∪X∈U /dBX.

Let a ∈ B ⊆ C. If POSB (d) = POSB−{a}(d), then a is called
relatively dispensable in B; otherwise, a is said to be relatively
indispensable in B. If every attribute in B is relatively indis-
pensable in B, we say that B ⊆ C is relatively independent in
DIS. B ⊆ C is called a relative reduct in DIS if B is relatively
independent in DIS and POSB (d) = POSC (d).

B. Fuzzy Sets and Fuzzy Logical Operators

Let IS = (U,C = {a1 , a2 , . . . , am}) be an information sys-
tem. If some attributes in C are real-valued or continuous, then
each of them can induce a fuzzy relation by defining a similar-
ity function. There are many discussions on how to construct
fuzzy relations by real-valued or continuous attributes in the
literature [8], [13]–[15], [27], [39]. In [8], a complete summa-
rization on this topic is provided. For a detailed introduction to
the notions, see these references.

Let U be a universal set. A fuzzy set A, or rather a fuzzy subset
A of U , is defined by a function assigning to each element x of
U a value A (x) ∈ [0, 1]. We denote by F (U) the set of all fuzzy
subsets of U . For any A,B ∈ F (U), we say that A is contained
in B, denoted by A ⊆ B, if A (x) ≤ B (x) for all x ∈ U , and we
say that A = B if and only if A ⊆ B and B ⊆ A. The support of
a fuzzy set A is a set defined as supp (A) = {x ∈ U |A (x) > 0}.
Given A,B ∈ F (U), the union of A and B, denoted as A ∪ B,
is defined by (A ∪ B) (x) = A (x) ∨ B (x) for all x ∈ U ; the
intersection of A and B, which is denoted as A ∩ B, is given by
(A ∩ B) (x) = A (x) ∧ B (x) for all x ∈ U .

In [48], Zadeh proposed the extension principle, which has
become an important tool in fuzzy set theory and its applications.
Let U and V be two sets and f be a mapping from U to V ; then,
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f can be extended to a mapping from F (U) to F (V ). That is

f̃ : F (U) → F (V ) , A| → f̃ (A) ∈ F (U) ∀A ∈ F (U)

and f̃ (A) (y) = supx∈U,f (x)=y Ã (x) for any y ∈ V .
Conversely, the mapping f : U → V can induce a mapping

f−1 from F (V ) to F (U) as follows:

f̃−1 : F (V ) → F (U) , B→ f̃−1 (A) ∈ F (U) ∀B ∈ F (V )

and f̃−1 (B) (x) = B (f (x)) for all x ∈ U .
A triangular norm, or shortly t-norm, is an increasing, as-

sociative, and commutative mapping T : [0, 1] × [0, 1] → [0, 1]
that satisfies the boundary condition (∀x ∈ [0, 1], T (x, 1) = x).

The most popular continuous t-norms are the following:
1) the standard min operator TM (x, y) = min{x, y};
2) the algebraic product TP (x, y) = x · y;
3) the bold intersection TL (x, y) = max{0, x + y − 1}.
A triangular conorm, or shortly t-conorm, is an increasing, as-

sociative, and commutative mapping S : [0, 1] × [0, 1] → [0, 1]
that satisfies the boundary condition (∀x ∈ [0, 1], S(x, 0) = x).

Three well-known continuous t-conorms are given as
follows:

1) the standard max operator SM (x, y) = max{x, y};
2) the probabilistic sum SP (x, y) = x + y − x · y;
3) the bounded sum SL (x, y) = min{1, x + y}.
A negator N is a decreasing mapping [0, 1] → [0, 1] satis-

fying N(0) = 1 and N(1) = 0. The negator Ns(x) = 1 − x
is usually referred to as the standard negator. A negator N is
called involutive iff N(N(x)) = x for all x ∈ [0, 1], every in-
volutive negator is continuous and strictly decreasing. Given a
negator N , a t-norm T and a t-conorm S are dual with respect
to N iff De Morgan laws are satisfied, i.e., S(N(x), N(y)) =
N(T (x, y)), T (N(x), N(y)) = N(S(x, y)).

For every A ∈ F (U), the symbol coN will be used to denote
fuzzy complement of A determined by a negator N , i.e., for
every x ∈ U, (coN A)(x) = N(A(x)).

Given a triangular norm T , for any α, γ ∈ [0, 1], let ϑ(α, γ) =
sup{θ ∈ [0, 1] : T (α, θ) ≤ γ}; then, the binary operation ϑ on
[0, 1] is called a R-implicator based on T . If T is lower semi-
continuous, ϑ is called the residuation implication of T , or the
T -residuated implication. The properties of T -residuated impli-
cation ϑ are listed in [46].

For a t-conorm S, the operator σ is defined as σ(a, b) =
inf{c ∈ [0, 1] : S(a, c) ≥ b}. If T and S are dual with respect to
an involutive negator N , then ϑ and σ are dual with respect to the
same involutive negator N , i.e., σ(N(a), N(b)) = N(ϑ(a, b))
and ϑ(N(a), N(b)) = σ(N(a, b)). The properties of σ are listed
in [21] and [46].

C. Fuzzy Rough Sets

Let U be a nonempty universe. By a T -similarity relation R,
we mean a fuzzy relation on U which is reflexive, symmetric,
and T -transitive. The similarity class [x]R with x ∈ U is a fuzzy
set on U defined by [x]R (y) = R(x, y) for all y ∈ U ; clearly,
every similarity class is a normal fuzzy set.

Approximation operators of fuzzy sets can be summarized as
the following four operators:

1) T -upper approximation operator:

RT A(x) = sup
u∈U

T (R(x, u), A(u))

2) S-lower approximation operator:

RS A(x) = inf
u∈U

S(N(R(x, u)), A(u))

3) σ-upper approximation operator:

RσA(x) = sup
u∈U

σ(N(R(x, u)), A(u))

4) ϑ-lower approximation operator:

RϑA(x) = inf
u∈U

ϑ(R(x, u), A(u))

for every fuzzy set A ∈ F (U), where R is an arbitrary
fuzzy relation.

These approximation operators have been studied in detail in
[46] from constructive, axiomatic, lattice, and fuzzy topological
viewpoints. Clearly, the above lower and upper approximations
are defined by membership functions; they are not explicitly
defined as the union of some basic granular fuzzy sets, and the
similarity classes cannot play this role since they are normal
fuzzy sets. This motivates researchers to consider granulation
of fuzzy points in [1].

Suppose U is a universe of discourse; T, S, and N are fuzzy
logic operators defined in Section II-B, and T and S are dual
with respect to N . Let R be a fuzzy relation on U . For x ∈ U, λ ∈
(0, 1], xλ is a fuzzy set defined as xλ(y) =

{
λ, y = x
0, y �= x

, which

is called a fuzzy point. We have RT xλ(y) = T (R(x, y), λ).
According to the observation in [1],

{
RT xλ : x ∈ U, λ ∈ (0, 1]

}
can be used as the basic information granules to reconstruct
lower and upper approximation of fuzzy sets, That is, if R
is a fuzzy T -similarity relation on U , then RϑA = ∪{RT xλ :
RT xλ ⊆ A} and RT A = ∪{RT xA(x) : x ∈ U}.

III. FUZZY RELATION MAPPINGS AND THEIR PROPERTIES

Mapping is a basic mathematical tool to communicate be-
tween two fuzzy sets. Similarly, by mapping, we could study
the communication between information systems using fuzzy
relations. In this section, we first define the notions of fuzzy
relation mappings by Zadeh’s extension principle and then
study their properties. Let U and V be two universes. The
classes of all fuzzy binary relations on U and V will be de-
noted by � (U × U) and � (V × V ), respectively. Let us start
with introducing the following concepts by Zadeh’s extension
principle.

Definition 3.1: Let f : U → V, u| → f (u) ∈ V, u ∈ U . By
the extension principle, f can induce a mapping from
� (U × U) to � (V × V ) and a mapping from � (V × V ) to
� (U × U), i.e.,

f̃ : �(U × U) → �(V × V ), R|
→ f̃(R) ∈ �(V × V ),∀R ∈ �(U × U)
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f̃(R)(x, y)

=

{
sup

u∈f −1 (x)
sup

v∈f −1 (y )
R(u, v), (x, y) ∈ f(U) × f(U)

0, (x, y) /∈ f(U) × f(U).

f̃−1 : �(V × V ) → �(U × U),

P → f̃−1(P ) ∈ �(U × U),∀P ∈ �(V × V )

f̃−1(P )(u, v) = P (f(u), f(v)).

Then, f̃ and f̃−1 are called fuzzy relation mapping and inverse
fuzzy relation mapping induced by f , respectively. f̃ (R) and
f̃−1 (P ) are called fuzzy binary relations induced by f on V
and U , respectively.

Remark 1: When R and P are crisp binary relations on U
and V , respectively, the definitions of f̃ (R) and f̃−1 (P ) will
be reduced to the definitions of the images of crisp binary rela-
tions in [38], respectively. For a given element v ∈ U , we know
that R (u, v) , u ∈ U is a fuzzy set on U . If f−1 (y) = v, then
f (R) (x, y) = supx=f (u) R (u, v) for any x ∈ f (U), which co-
incides with Zadeh’s extension principle. Thus, Definition 3.1
is an extension of the extension principle. So that there is no
confusion in the subsequent discussion, we simply denote f̃ and
f̃−1 as f and f−1 , respectively.

Definition 3.2: Let U and V be two universes, f : U → V a
mapping from U to V , and R,R1 , R2 ∈ � (U × U). Let [x]f =
{y ∈ U : f(y) = f(x)}; then, {[x]f : x ∈ U} is a partition on
U . For any x, y ∈ U , if one of the following statements holds:

1) R1 (u, v) ≤ R2 (u, v) for any (u, v) ∈ [x]f × [y]f
2) R1 (u, v) ≥ R2 (u, v) for any (u, v) ∈ [x]f × [y]f

then f is called consistent with respect to R1 and R2 . If one of
the following statements holds:

1) R1 (u, v) < R2 (u, v) for any (u, v) ∈ [x]f × [y]f
2) R1 (u, v) > R2 (u, v) for any (u, v) ∈ [x]f × [y]f

then f is strictly consistent with respect to R1 and R2 . For
any u, s,∈ [x]f and v, t ∈ [y]f , if R (u, v) = R (u, t), then f is
called predecessor-compatible with respect to R; if R (u, v) =
R (s, v), then f is called successor-compatible with respect to R;
if R (u, v) = R (s, t), then f is called compatible with respect
to R.

It is easy to check that a function f is compatible with re-
spect to R if and only if f is both successor-compatible and
predecessor-compatible with respect to R. Let A ∈ F (U) be a
fuzzy set on U . Similar to Definition 3.2, we will say f is com-
patible with respect to A if A (u) = A (v) for any u, v ∈ [x]f ,
where x ∈ U . From Definition 3.2, an injection is trivially both
a consistent and a compatible function.

Proposition 3.3: Let R,R1 , R2 ∈ � (U × U). If f is compat-
ible with respect to R,R1 , and R2 , respectively. Then

1) f is compatible with respect to R1 ∪ R2 ;
2) f is compatible with respect to R1 ∩ R2 ;
3) f is compatible with respect to the complement of R.
Proof: Straightforward.
For a predecessor-compatible (successor-compatible) func-

tion, it has the similar properties for R1 ∪ R2 , R1 ∩ R2 and the
complement of R. Here, ∪ and ∩ represent max and min set
operations, respectively.

Proposition 3.4: Let R1 , R2 ∈ � (U × U). If f is compatible
with respect to R1 and R2 respectively, then f is consistent with
respect to R1 and R2 .

Proof: Straightforward.
Remark 2: If f is only predecessor-compatible, or successor-

compatible with respect to R1 and R2 , we cannot guarantee that
f is consistent with respect to R1 and R2 . It is also noted that
the converse of Proposition 3.4 is not necessarily true.

The following theorem discusses properties of fuzzy binary
relations under the relation mappings f and f−1 , respectively.

Theorem 3.5: Let f : U → V , and f be surjective, R ∈
� (U × U), and P ∈ � (V × V ). Then, we have the following.

1) If R is reflexive, then f (R) is reflexive; if P is reflexive,
then f−1 (P ) is reflexive.

2) If R is symmetric, then f (R) is symmetric; If P is sym-
metric, then f−1 (P ) is symmetric.

3) If P is T -transitive, then f−1 (P ) is T -transitive.
4) If f is compatible with respect to R, then R is T -transitive

if and only if f (R) is T -transitive.
Proof: 1) Let R be reflexive; we need to prove that f (R) is

reflexive. Since f is surjective, it follows that for any y ∈ V ,
there must exist x ∈ U such that f (x) = y. By the reflexivity
of R, we have R (x, x) = 1. From the definition of f (R)

f (R) (y, y) = sup
u∈f −1 (y )

sup
v∈f −1 (y )

R (u, v) ≥ R (x, x) = 1.

Thus, f (R) is reflexive.
Let P be reflexive; we need to prove that f−1 (P ) is reflexive.

For any x ∈ U , let f (x) = y ∈ V . By the reflexivity of P , we
have P (y, y) = 1. Thus

f−1 (P ) (x, x) = P (f (x) , f (x)) = P (y, y) = 1.

Hence, f−1 (P ) is reflexive.
2) Let R be symmetric; we need to prove that f (R) is sym-

metric. For any x, y ∈ V

f (R) (x, y) = sup
u∈f −1 (x)

sup
v∈f −1 (y )

R (u, v)

= sup
v∈f −1 (y )

sup
u∈f −1 (x)

R (v, u)

= f (R) (y, x)

by the symmetry of R. Hence, f (R) is symmetric.
Let P be symmetric; we need to prove that f−1 (P ) is sym-

metric. For any u, v ∈ U

f−1 (P ) (u, v) = P (f (u) , f (v))

= P (f (v) , f (u))

= f−1 (P ) (v, u)

by the symmetry of P . Hence, f−1 (P ) is symmetric.
3) Let P be T -transitive; for any x, y, z ∈ U

T
(
f−1 (P ) (x, y) , f−1 (P ) (y, z)

)
= T (P (f (x) , f (y)) , P (f (y) , f (z)))

≤ P (f (x) , f (z)) = f−1 (P ) (x, z)

by the transitivity of P . Hence, f−1 (P ) is transitive.
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TABLE I
SIMILARITY RELATION R

4) ⇒ For any x, y, z ∈ V , since f is surjective, it follows that
there must exist u0 , v0 , t0 ∈ U such that

f (u0) = x, f (v0) = y, f (t0) = z.

Since f is compatible with respect to R, we have

R (u0 , v0) = R (u, v) , R (v0 , t0) = R (v, t)

for any (u, v) ∈ f−1 (x) × f−1 (y) and (v, t) ∈ f−1 (y) ×
f−1 (t). Hence

T (f (R) (x, y) , f (R) (y, z))

= T
((

sup
u∈f −1 (x)

sup
v∈f −1 (y )

R (u, v)
)
,

(
sup

s∈f −1 (y )
sup

t∈f −1 (z )
R (s, t)

))

= T (R (u0 , v0) , R (v0 , t0)) ≤ R (u0 , t0)

by the transitivity of R. Similarly

f (R) (x, z) = sup
u∈f −1 (x)

sup
t∈f −1 (z )

R (u, t) = R (u0 , t0) .

Therefore, T (f (R) (x, y) , f (R) (y, z)) ≤ f (R) (x, z),
which implies f (R) is T -transitive.

⇐ Since f is compatible with respect to R, we
have R (u1 , v1) = R (u, v) for any (u1 , v1) ∈ f−1 (f (u)) ×
f−1 (f (v)).

Thus

f−1(f(R))(u, v)= sup
f (u1 )=f (u)

sup
f (v1 )=f (v )

R (u1 , v1) = R (u, v) .

Therefore, f−1 (f (R)) = R. Since f (R) is T -transitive, it
follows from (3) and f−1 (f (R)) = R that R is T -transitive. �

Remark 3: In general, a fuzzy relation mapping f can preserve
the reflexivity and symmetry of a fuzzy relation, but it cannot
preserve the transitivity of a fuzzy relation. This means that
it needs more conditions to keep the transitivity of a fuzzy
relation invariant. Below, we give an illustrative example. For
simplification, we write Table 1 as T-1, Table 2 as T-2, and so
on in data tables.

Example 3.1: Let U = {x1 , x2 , x3 , x4} , V = {y1 , y2 , y3}. R
is a sup-min similarity relation on U given in Table I.

Define a mapping f1 : U → V as follows:

x1 , x2 x3 x4

y1 y2 y3
.

Then, f1 (R) can easily be computed and is given in Table II.

TABLE II
RELATION f1 (R)

TABLE III
RELATION f2 (R)

Define a mapping f2 : U → V as follows:

x1 x2 , x3 x4

y1 y2 y3
.

Then, f2 (R) can easily be computed and is given in Table III.
We can easily verify that f1 is not compatible with respect to

R and f1(R) is not sup-min transitive, while f2 is compatible
with respect to R and f2(R) is sup-min transitive. �

The following theorem discusses the properties of fuzzy re-
lation operations under a fuzzy relation mapping f .

Theorem 3.6: Let f : U → V,R1 , R2 ∈ �(U × U); then, we
have the following.

1) f (R) = � ⇔ R = �.
2) f (R1 ∪ R2) = f (R1) ∪ f (R2).
3) f (R1 ∩ R2) ⊆ f (R1) ∩ f (R2); if f is consistent with

respect to R1 and R2 , then the equality holds.
4) R1 ⊆ R2 ⇒ f (R1) ⊆ f (R2).
Proof: 1) ⇒ Since f (R) = �, we have for any x, y ∈ V

f (R) (x, y) = sup
u∈f −1 (x)

sup
v∈f −1 (y )

R (u, v) = 0

⇔ ∀ (u, v) ∈ f−1 (x) × f−1 (y) , R (u, v) = 0.

Therefore, R (u, v) = 0 for any u, v ∈ U .
⇐ It is clearly true.

2) f (R1 ∪ R2) (x, y) = sup
u∈f −1 (x)

sup
v∈f −1 (y )

(R1 ∪ R2) (u, v)

= sup
u∈f −1 (x)

sup
v∈f −1 (y )

(R1 (u, v) ∨ R2 (u, v))

= (f (R1) ∪ f (R2)) (x, y) .

3) For any x, y ∈ V

f (R1 ∩ R2) (x, y) = sup
u∈f −1 (x)

sup
v∈f −1 (y )

(R1 ∩ R2) (u, v)

= sup
u∈f −1 (x)

sup
v∈f −1 (y )

(
R1 (u, v) ∧ R2 (u, v)

)

≤
(

sup
u∈f −1 (x)

sup
v∈f −1 (y )

R1 (u, v)
)

∧
(

sup
u∈f −1 (x)

sup
v∈f −1 (y )

R2 (u, v)
)

= (f (R1) ∩ f (R2)) (x, y) .
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Now, we prove that if f is consistent with respect to R1 and
R2 , then the equality holds. By the above result, we only need
to prove the inverse inclusion. Since f is consistent with respect
to R1 and R2 , it follows from Definition 3.2 that R1 and R2
satisfy one of the following conditions:

1) R1 (u, v) ≤ R2 (u, v), and 2) R1 (u, v) ≥ R2 (u, v) for
any (u, v) ∈ f−1 (x) × f−1 (y).

For case 1, we have

f (R1 ∩ R2) (x, y) = sup
u∈f −1 (x)

sup
v∈f −1 (y )

(R1 ∩ R2) (u, v)

= sup
u∈f −1 (x)

sup
v∈f −1 (y )

(R1 (u, v) ∩ R2 (u, v))

= sup
u∈f −1 (x)

sup
v∈f −1 (y )

R1 (u, v)

= f (R1) (x, y)

and

(f (R1) ∩ f (R2)) (x, y) = f (R1) (x, y) ∧ f (R2) (x, y)

=
(

sup
u∈f −1 (x)

sup
v∈f −1 (y )

R1 (u, v)
)

∧
(

sup
u∈f −1 (x)

sup
v∈f −1 (y )

R2 (u, v)
)

= sup
u∈f −1 (x)

sup
v∈f −1 (y )

R1 (u, v)

= f (R1) (x, y) .

Hence, f (R1 ∩ R2) = f (R1) ∩ f (R2). Similarly, for case
2, we also have f (R1 ∩ R2) = f (R1) ∩ f (R2); therefore, we
conclude the proof.

Proof: Straightforward. �
Remark 4: Equation (3) in Theorem 3.6 provides a sufficient

condition to preserve the intersection operation of fuzzy rela-
tions under a fuzzy relation mapping f . In general, a fuzzy
relation mapping f does not keep invariant the intersection of
fuzzy relations. In the following we give an example to illustrate
the case.

Example 3.2: Let U = {x1 , x2 , x3 , x4}, and V =
{y1 , y2 , y3}. R1 and R2 are two fuzzy relations on U ,
which are given in Tables IV and V, respectively.

Define a mapping f : U → V as follows:

x1 , x2 x3 , x4

y1 y2
.

Then, f (R1) , f (R2), and f (R1 ∩ R2) can be computed and
are given in Tables VI, VI, and VIII, respectively. We can see
that f (R1 ∩ R2) ⊂ f (R1) ∩ f (R2). If we define a mapping
f : U → V as

x1 , x4 x2 x3

y1 y2 y3

we can verify that f (R1 ∩ R2) = f (R1) ∩ f (R2).

TABLE IV
RELATION R1

TABLE V
RELATION R2

TABLE VI
RELATION f (R1 )

By Theorem 3.6, we can obtain the following corollary.
Corollary 3.7: Let f : U → V,R1 , R2 , . . . , Rn ∈ �(U ×

U); then
1) f (

⋃n
i=1 Ri) =

⋃n
i=1 f (Ri) .

2) f (
⋂n

i=1 Ri) ⊆
⋂n

i=1 f (Ri); if f is consistent with re-
spect to any two of fuzzy relations R1 , R2 , . . . , Rn , then
the equality holds.

Corollary 3.8: If f is compatible with respect to each of fuzzy
relations R1 , R2 , . . . , Rn ∈ � (U × U), then f (

⋂n
i=1 Ri) =⋂n

i=1 f (Ri).
The following theorem discusses operations of fuzzy relations

under an inverse fuzzy relation mapping f−1 .
Theorem 3.9: Let f : U → V, P, P1 , P2 ∈ �(V × V ); then
1) f−1 (�) = �.
2) If f is surjective, f−1 (P ) = � ⇔ P = �.
3) f−1 (P1 ∪ P2) = f−1 (P1) ∪ f−1 (P2) .
4) f−1 (P1 ∩ P2) = f−1 (P1) ∩ f−1 (P2) .
5) P1 ⊆ P2 ⇒ f−1 (P1) ⊆ f−1 (P2) .
Proof: Straightforward. �
Theorem 3.10: Let f : U → V,R ∈ � (U × U) , P ∈ �

(V × V ); then
1) f

(
f−1 (P )

)
⊆ P ; if f is surjective, then the equality

holds.
2) f−1 (f (R)) ⊇ R; the equality holds if and only if f is

compatible with respect to R.
Proof: 1) For (x, y) ∈ f (U) × f (U) ⊆ V × V, f−1 (x) �=

� and f−1 (y) �= �. Thus

f
(
f−1 (P )

)
(x, y) = sup

u∈f −1 (x)
sup

v∈f −1 (y )
f−1 (P ) (u, v)

= sup
u∈f −1 (x)

sup
v∈f −1 (y )

P (f (u) , f (v))

= P (x, y) .
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For (x, y) /∈ f (U) × f (U) satisfying (x, y) ∈ V × V,
f

(
f−1 (P )

)
(x, y) = 0 by the Definition 3.1. Hence

f
(
f−1 (P )

)
(x, y) ⊆ P (x, y).

2) Since

f−1 (f (R)) (u, v) = f (R) (f (u) , f (v))

= sup
f (x)=f (u)

sup
f (y )=f (v )

R (x, y) ≥ R (u, v)

for any (u, v) ∈ U × U , we have f−1 (f (R)) ⊇ R.
If f is compatible with respect to R, we have R (x, y) =

R (u, v) for any (x, y) ∈ f−1 (f (u)) × f−1 (f (v)).
Thus

f−1 (f (R)) (u, v) = sup
f (x)=f (u)

sup
f (y )=f (v )

R (x, y) = R (u, v) .

Therefore, f−1 (f (R)) = R, and the sufficiency holds.
Suppose f−1 (f (R)) = R. If there are two pairs of el-

ements (x, y) , (u, v) ∈ U × U satisfying f (x) = f (u) and
f (y) = f (v), but R (x, y) �= R (u, v). Without loss of general-
ity, we assume that R (x, y) < R (u, v). On the other hand, by
f−1 (f (R)) = R, we have

R (x, y) = f−1 (f (R)) (x, y)

= f (R) (f (x) , f (y))

= sup
f (u)=f (x)

sup
f (u)=f (x)

R (u, v) ≥ R (u, v) .

This is a contradiction to R (x, y) < R (u, v), and we get the
necessity. �

By Proposition 3.3 and Theorem 3.10, we can obtain the
following corollary.

Corollary 3.11: Let f : U → V,R1 , R2 , . . . , Rn ∈ �(U ×
U), and P1 , P2 , . . . , Pn ∈ �(V × V ); then

1) f
(
f−1 (

⋂n
i=1 Pi)

)
⊆

⋂n
i=1 Pi ; if f is surjective, then the

equality holds;
2) f−1 (f (

⋂n
i=1 Ri)) ⊇

⋂n
i=1 Ri ; the equality holds if f is

compatible with respect to Ri (i ≤ n).
The following theorem shows that under a certain condi-

tion, the images of fuzzy information granules on U and V
can be viewed as the fuzzy information granules on V and U ,
respectively.

Theorem 3.12: Let f be a mapping from U to V, x ∈ U and
λ ∈ [0, 1]. Let RT xλ be a T -fuzzy information granule on U .
Then

1) f
(
RT xλ

)
⊆ f (R)T f (x)λ; if f is successor-compatible

with respect to R, then the equality holds. In particular, if
T is a strictly increasing function, then the equality holds
if and only if f is successor-compatible with respect to R.

2) f−1
(
f

(
RT xλ

))
⊇ RT xλ; If f is predecessor-compatible

with respect to R, then the equality holds. In particular, if
T is a strictly increasing function, then the equality holds
if and only if f is predecessor-compatible with respect to
R.

Proof: 1) By the definition of RT xλ, it follows from the
properties of T that

f
(
RT xλ

)
(y) = sup

v∈f −1 (y )
RT xλ (v)

= sup
v∈f −1 (y )

T (R (x, v) , λ)

= T
(

sup
v∈f −1 (y )

R (x, v) , λ
)

and

f (R)T f (x)λ (y) = T (f (R) (f (x) , y) , λ)

= T
(

sup
u∈f −1 (f (x))

sup
v∈f −1 (y )

R (u, v) , λ
)
.

Hence, f
(
RT xλ

)
(y) ⊆ f (R)T f (x)λ (y).

If f is successor-compatible with respect to R, then we have
supu∈f −1 (f (x)) supv∈f −1 (y ) R (u, v) = supv∈f −1 (y ) R (x, v).
Thus, f

(
RT xλ

)
= f (R)T f (x)λ.

On the contrary, let T be a strictly increasing function and
f

(
RT xλ

)
= f (R)T f (x)λ. As shown above, we have

f
(
RT xλ

)
= T

(
sup

v∈f −1 (y )
R (x, v) , λ

)

= T
(

sup
u∈f −1 (f (x))

sup
v∈f −1 (y )

R (u, v) , λ
)

= f (R)T f (x)λ .

Since T is a strictly increasing function, it follows that
supv∈f −1 (y ) R (x, v) = supu∈f −1 (f (x)) supv∈f −1 (y ) R (u, v).
Thus, R (x, v) = supu∈f −1 (f (x)) R (u, v). By the arbitrariness
of x ∈ U , we know that f is successor-compatible with respect
to R.

2)

f−1 (
f

(
RT xλ

))
(y) = f

(
RT xλ

)
(f (y))

= sup
u∈f −1 (f (y ))

RT xλ (u)

= sup
u∈f −1 (f (y ))

T (R (x, u) , λ)

= T
(

sup
u∈f −1 (f (y ))

R (x, u) , λ
)

⊇ T (R (x, y) , λ)

= RT xλ (y) .
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If f is predecessor-compatible with respect to R, then
supu∈f −1 (f (y )) R (x, u) = R (x, y). Thus, the equality holds.

On the contrary, let T be a strictly increasing function, and
f−1

(
f

(
RT xλ

))
= RT xλ. As shown above, we have

f−1 (
f

(
RT xλ

))
(y) = T

(
sup

u∈f −1 (f (y ))
R (x, u) , λ

)

= T (R (x, y) , λ) = RT xλ (y) .

Since T is a strictly increasing function, it follows that
supu∈f −1 (f (y )) R (x, u) = R (x, y). By the arbitrariness of y ∈
U , we know that f is predecessor-compatible with respect to
R. �

The following theorem discusses the issue of approximations
under fuzzy relation mappings f and f−1 , respectively.

Theorem 3.13: Let f : U → V,R ∈ � (U × U) , P ∈
� (V × V ) , A ∈ F (U) , and B ∈ F (V ); then, we have the
following.

1) If f is compatible with respect to R, then f
(
apr

R
A

)
⊆

apr
f (R)

f (A); in particular, if f is also compatible with
respect to A, then the equality holds.

2) If f is compatible with respect to R, then f (aprRA) ⊆
aprf (R)f (A); in particular, if f is also compatible with
respect to A, then the equality holds.

3) For ξ ∈ [0, 1], let Δξ (u) = ξ,∀u ∈ U . Then
f
(
apr

R
Δξ

)
= apr

f (R)
f (Δξ ) = Δξ .

4) For ξ ∈ [0, 1], let Δξ (u) = ξ,∀u ∈ U . Then
f
(
aprRΔξ

)
= aprf (R)f (Δξ ) = Δξ .

5) f−1
(
apr

P
B

)
⊆ apr

f −1 (P )
f−1 (B); the equality holds

iff f is surjective.
6) f−1 (aprP B) ⊇ aprf −1 (P )f

−1 (B); the equality holds iff
f is surjective.

Here apr
R

is referred to as lower approximation operator
such as RS or Rϑ . aprR is referred to as upper approximation
operator such as RT or Rσ .

Proof: 1) For any x, s ∈ V , since f is compatible with respect
to R, it follows from Definition 3.2 that R (y, z) = R (y0 , z0)
for any (y, z) , (y0 , z0) ∈ f−1 (x) × f−1 (s). For S-lower ap-
proximation operator, we have

f
(
apr

R
A

)
(x) = sup

y∈f −1 (x)

(
apr

R
A

)
(y)

= sup
y∈f −1 (x)

{
inf
z∈U

S (N (R (y, z)) , A (z))
}

= inf
z∈U

S (N (R (y0 , z)) , A (z))

=
(
apr

R
A

)
(y0) , y0 ∈ f−1 (x)

and

(
apr

f (R)
f (A)

)
(x) = inf

s∈V
S (N (f (R) (x, s)) , f (A) (s))

= inf
s∈V

S
(
N

(
sup

y∈f −1 (x)
sup

z∈f −1 (s)
R (y, z)

)
, sup
w∈f −1 (s)

A (w)
)

= inf
s∈V

S
(
N (R (y0 , z0)) ,

(
sup

w∈f −1 (s)
A (w)

))

≥ inf
s∈V

S (N (R (y0 , z0)) , A (z0))
(
z0 ∈ f−1 (s)

)

= inf
z0 ∈U

S (N (R (y0 , z0)) , A (z0))

=
(
apr

R
A

)
(y0) , y0 ∈ f−1 (x) .

Thus, f
(
apr

R
A

)
⊆ apr

f (R)
f (A). Specially, if f is also

compatible with respect to A, we have A (w) = A (z) for
any w, z ∈ f−1 (s), which implies supw∈f −1 (s) A (w) = A (z).
Similarly, we can conclude that f

(
apr

R
A

)
= apr

f (R)
f (A).

Similar to the above proof, we also have the same result for
ϑ−lower approximation operator.

2) For T−upper approximation operator, we have

f (aprRA) (x) = sup
y∈f −1 (x)

(aprRA) (y)

= sup
y∈f −1 (x)

{
sup
z∈U

T (R (y, z) , A (z))
}

= sup
z∈U

{
sup

y∈f −1 (x)
T (R (y, z) , A (z))

}

= sup
z∈U

T (R (y0 , z) , A (z))

= (aprRA) (y0) , y0 ∈ f−1 (x)

and

(
aprf (R)f (A)

)
(x) = sup

s∈V
T (f (R) (x, s) , f (A) (s))

= sup
s∈V

T
(

sup
y∈f −1 (x)

sup
z∈f −1 (s)

R (y, z) , sup
w∈f −1 (s)

A (w)
)

= sup
s∈V

T
(
(R (y0 , z0)) , sup

w∈f −1 (s)
A (w)

)

≥ sup
s∈V

T (R (y0 , z0) , A (z0))
(
z0 ∈ f−1 (s)

)

= sup
z0 ∈U

T (R (y0 , z0) , A (z0))

= (aprRA) (y0) , y0 ∈ f−1 (x) .

Thus, f (aprRA) ⊆ aprf (R)f (A). Similar to the above
proof, we have the same result for σ-upper approximation
operator.

For S-lower approximation operator, we have

apr
R
Δξ (x) = inf

y∈U
S (N (R (x, y)) ,Δξ (y)) ≥ inf

y∈U
Δξ (y)

= ξ = Δξ (x)

which implies Δξ ⊆ apr
R
Δξ . Hence, Δξ = apr

R
Δξ . Thus

f
(
apr

R
Δξ

)
(x) = f (Δξ ) (x) = sup

y∈f −1 (x)
Δξ (y) = ξ.
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Since

apr
f (R)

f (Δξ ) (x) = inf
y∈U

S (N (f (R) (x, y)) , f (Δξ ) (y))

= inf
y∈U

S
(
N

(
sup

u∈f −1 (x)
sup

v∈f −1 (y )
R (u, v)

)
, f (Δξ ) (y)

)

≥ f (Δξ ) (y) = ξ = f (Δξ ) (x)

we have apr
f (R)

f (Δξ ) = f (Δξ ), which implies

apr
f (R)

f (Δξ ) = f (Δξ ) = ξ.

Similar to the above proof, we have the same result for
ϑ−lower approximation operator. Thus, we complete the proof.

4) Similar to the proof of (3).
5) For S-lower approximation operator, we have

f−1(apr
P

B
)
(x) = apr

P
B (f (x))

= inf
y∈V

S (N (P (f (x) , y)) , B (y))

and

apr
f −1 (P )

f−1 (B) (x)

= inf
z∈U

S
(
N

(
f−1 (P ) (x, z)

)
, f−1 (B) (z)

)

= inf
z∈U

S (N (P (f (x) , f (z))) , B (f (z)))

≥ inf
y∈V

S (N (P (f (x) , y)) , B (y))

by f (U) ⊆ V . Thus, f−1
(
apr

P
Y

)
⊆ apr

f −1 (P )
f−1 (Y ). If

f is surjective, f (U) = V , which implies f−1
(
apr

P
B

)
=

apr
f −1 (P )

f−1 (B).
On the contrary, assume that f is not surjective; then f (U) ⊆

V . According to the above proof, we have f−1
(
apr

P
B

)
⊆

apr
f −1 (P )

f−1 (B), which is a contradiction. Similar to the

above proof, we have the same result for ϑ-lower approximation
operator. We complete the proof.

6) Similar to the proof of (5). �

IV. HOMOMORPHISM BETWEEN INFORMATION SYSTEMS WITH

FUZZY RELATIONS

In this section, based on the results of the previous sections,
we introduce the notions of homomorphism to study the com-
munication between information systems with fuzzy relations,
and investigate some properties of this type of information sys-
tems under the condition of homomorphism. However, the idea
of homomorphism in this section has no closed link with the
ones in standard algebra such as group theory or ring theory.
Homomorphism employs the same idea to set up relationship
between two sets. We first introduce the notions of fuzzy relation
information systems.

Definition 4.1: Let U and V be finite universes, f :
U → V a mapping from U to V , and R = {R1 , R2 , . . . , Rn}

a family of fuzzy binary relations on U ; let f(R) =
{f (R1) , f (R2) , . . . , f (Rn )}. Then, the pair (U,R) is referred
to as a fuzzy relation information system, and the pair (V, f(R))
is referred to as a f−induced fuzzy relation information system
of (U,R).

Definition 4.2: Let U and V be finite universes, f : U →
V a mapping from U to V , and P = {P1 , P2 , . . . , Pn}
a family of fuzzy binary relations on V . Let f−1 (P) ={
f−1 (P1) , f−1 (P2) , . . . , f−1 (Pn )

}
. Then, the pair (V,P) is

referred to as a fuzzy relation information system, and the pair(
U, f−1 (P)

)
is referred to as a f -induced fuzzy relation infor-

mation system of (V,P).
Definition 4.3: Let (U,R) be a fuzzy relation information

system and (V, f(R)) a f -induced fuzzy relation information
system of (U,R) , Ri ∈ R, i ≤ n. f is referred to as a homo-
morphism from (U,R) to (V, f(R)) if f satisfies the following
conditions:

1) f (
⋂n

i=1 Ri) =
⋂n

i=1 f(Ri).
2) f (

⋂n
i=1 Ri) =

⋂n
i=1 f(Ri).

Definition 4.4: Let
(
U, f−1 (P)

)
be a f -induced fuzzy rela-

tion information system of (V,P). If f is surjective, then f−1 is
referred to as a homomorphism from (V,P) to

(
U, f−1 (P)

)
.

Theorem 4.5: Let (U,R) be a fuzzy relation information sys-
tem and (V, f(R)) a f -induced fuzzy relation information sys-
tem of (U,R). If∀Ri,Rj ∈ R, f is consistent with respect to Ri

and Rj , then f is a homomorphism from (U,R) to (V, f(R)).
Proof: It follows immediately from Corollary 3.7 and

Definition 4.3.
By Proposition 3.4 and Theorem 4.5, we get the following

corollary.
Corollary 4.6: Let (U,R) be a fuzzy relation information

system and (V, f(R)) a f -induced fuzzy relation information
system of (U,R). If ∀Ri ∈ R, f is compatible with respect to
Ri , then f is a homomorphism from (U,R) to (V, f(R)).

In order to identify homomorphism satisfying different con-
ditions, we make the following appointments.

1) If ∀Ri,Rj ∈ R, f is consistent (respectively, strictly con-
sistent) with respect to Ri and Rj , we call f a consistent
(respectively, strictly consistent) homomorphism.

2) A homomorphism satisfying the condition that f is com-
patible with respect to each fuzzy relation Ri ∈ R is called
compatible.

Remark 5: After introducing the notions of homomorphism,
all the theorems and corollaries in which the equality “=”
holds in the above sections may be viewed as the properties of
homomorphism.

The following theorems and corollaries reveal the nature of a
homomorphism from (U,R) to (V, f(R)).

Theorem 4.7: Let (U,R) be a fuzzy relation information sys-
tem, (V, f(R)) a f -induced fuzzy relation information system
of (U,R), and f a compatible homomorphism from (U,R) to
(V, f(R)). Then, ∀Ri ∈ R, where

1) Ri is reflexive if and only if f (Ri) is reflexive;
2) Ri is symmetric if and only if f (Ri) is symmetric;
3) Ri is transitive if and only if f (Ri) is transitive;
4) the numbers of binary relations in R and f(R) are equal

to each other, that is, f is one-to-one with respect to Ri ;



536 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 3, JUNE 2013

5) if f is surjective (not bijective), then the number of objects
in V is less than in U , i.e., f is not one-to-one with respect
to x ∈ U .

Proof: Since f is a compatible homomorphism from (U,R) to
(V, f(R)), we know that ∀Ri ∈ R, f is compatible with respect
to Ri .

(1) If Ri is reflexive, by Theorem 3.5, f (Ri) is also reflexive.
Letting Ri be not reflexive, and assuming that f (Ri) is reflexive,
by Theorem 3.5 and Theorem 3.10 (2), we know that Ri is
reflexive. This is a contradiction. Therefore, f (Ri) is also not
reflexive.

(2) and (3) are similar to the proof of (1).
(4) Let R1 �= R2 . Assume that f (R1) = f (R2). Then,

f−1 (f (R1)) = f−1 (f (R2)). According to Theorem 3.10 (2),
f−1 (f (R1)) = R1 and f−1 (f (R2)) = R2 . It follows that
R1 = R2 . This is a contradiction.

(5) Straightforward. �
Remark 6: From (1)–(3) of this theorem, we can see that

the reflexivity, symmetry, and transitivity of a fuzzy relation
are kept in the communication between two information sys-
tems under a compatible homomorphism f . By (4) and (5) of
this theorem, we know that a compatible homomorphism f
on information systems is a useful tool to aggregate sets of
objects. It should be pointed out that a strictly consistent ho-
momorphism also has the same properties as (4) and (5) listed
above.

Remark 7: Parallel to Theorem 4.7, there are similar proper-
ties for a homomorphism from (V,P) to

(
U, f−1 (P)

)
.

Definition 4.8: Let (U,R) be a fuzzy relation information
system, R ⊆ R and S ⊆ R. R is said to be superfluous in R if
∩R = ∩ (R − {R}); otherwise, it is indispensable. The subset
S is referred to as a reduct of R if S satisfies the following
conditions:

1) ∩S = ∩R;
2) ∀Ri ∈ S,∩S ⊂ ∩ (S − {Ri}) .
Let Re d(R) be the collection of all reducts of R, and let

Core(R) = ∩Re d(R), similar to the counterpart in Pawlak’s
rough sets, Core(R) is the collection of all indispensable ele-
ments in R and is called the core of R.

Theorems 4.9 and 4.10 show that under the condition of a
strictly consistent homomorphism, or a compatible homomor-
phism f , the image of reduct of the original system is also a
reduct of image system.

Theorem 4.9: Let (U,R) be a fuzzy relation information sys-
tem, (V, f(R)) a f -induced fuzzy relation information system
of (U,R) , f a strictly consistent homomorphism from (U,R)
to (V, f(R)) and S ⊆ R. Then, S is a reduct of R if and only
if f (S) is a reduct of f(R).

Proof: ⇒ Since S is a reduct of R, we have ∩S = ∩R.
Hence f (∩S) = f (∩R) . Since f is a consistent homo-
morphism from (U,R) to (V, f(R)), by Definition 4.3
and Corollary 3.7 (2), we have ∩f (S) = ∩f(R). As-
sume that ∃Ri ∈ S such that ∩ (f (S) − f (Ri)) = ∩f (S).
Because of f (S) − f (Ri) = f (S − {Ri}) , we have
∩ (f (S) − f (Ri)) = ∩f (S − {Ri}) = ∩f (S) = ∩f(R).
Similarly, by Definition 4.3 and Corollary 4.7(2), it follows that
f (∩ (S − Ri)) = f (∩R). Again, since S is a reduct of R,

we have ∩S �= ∩ (S − {Ri}). Thus, there must be x0 , y0 ∈ U
such that ∩S (x0 , y0) < ∩ (S − {Ri}) (x0 , y0), which
implies

f (∩ (S − {Ri})) (f (x0) , f (y0))

= sup
u∈f −1 (f (x0 ))

sup
v∈f −1 (f (y0 ))

∩ (S − {Ri}) (u, v)

> sup
u∈f −1 (f (x0 ))

sup
v∈f −1 (f (y0 ))

∩S (u, v)

= f (∩S) (f (x0) , f (y0))

= f (∩R) (f (x0) , f (y0))

by the fact that f is a strictly consistent homomorphism. This is
a contradiction.
⇐ Let f (S) be a reduct of f(R); then, ∩f (S) = ∩f(R).

Since f is a consistent homomorphism from (U,R) to
(V, f(R)), by Definition 4.3 and Corollary 3.7(2), we have
f (∩S) = f (∩R). Assume that ∩S ⊇ ∩R, there must exist
x0 , y0 ∈ U such that ∩R (x0 , y0) < ∩S (x0 , y0). By the strictly
consistence of homomorphism, we have

f (∩S) (f (x0) , f (y0)) = sup
u∈f −1 (f (x0 ))

sup
v∈f −1 (f (y0 ))

∩S (u, v)

> sup
u∈f −1 (f (x0 ))

sup
v∈f −1 (f (y0 ))

∩R (u, v)

= f (∩R) (f (x0) , f (y0)) .

This is a contradiction. Thus, ∩S = ∩R. Assume that ∃Ri ∈
S such that ∩ (S − {Ri}) = ∩R; then, f (∩ (S − Ri)) =
f (∩R). Again, by Definition 4.3 and Corollary 3.7(2), we
have ∩f (S − {Ri}) = ∩f(R). Hence, ∩ (f (S) − f (Ri)) =
∩f(R). This is a contradiction to the fact that f (S) is a reduct
of f(R). This completes the proof of this theorem. �

Theorem 4.10: Let (U,R) be a fuzzy relation information
system, (V, f(R)) a f -induced fuzzy relation information sys-
tem of (U,R) , f a compatible homomorphism from (U,R) to
(V, f(R)) and S ⊆ R. Then, S is a reduct of R if and only if
f (S) is a reduct of f(R).

Proof: It follows immediately from Definitions 4.3 and Corol-
laries 3.8, 3.11(2).

By Theorems 4.9 and 4.10, we immediately get the following
corollary.

Corollary 4.11: Let (V, f(R)) be a f -induced fuzzy relation
information system of (U,R) , R ∈ R, and S ⊆ R. If f is a
strictly consistent homomorphism, or a compatible homomor-
phism from (U,R) to (V, f(R)), then we have following.

1) R is indispensable in R if and only if f (R) is indispens-
able inf(R).

2) S is superfluous in R if and only if f (S) is superfluous in
f(R).

3) The image of the core of R, is the core of the image of R,
and the inverse image of the core of f(R) is the core of
the original image. That is, Core(R) is the core of R if
and only if Core (f(R)) is the core of f(R).

Remark 8: If f is just a general homomorphism from (U,R)
to (V, f(R)), it can only keep the statement that S is a reduct
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TABLE VII
RELATION f (R2 )

TABLE VIII
RELATION f (R1 ) ∩ (R2 )

TABLE IX
RELATION R1

of R ⇒ f (S) is a reduct of f(R) true. It cannot guarantee that
the converse statement is true.

Parallel to Theorem 4.10, there is a similar theorem for a
homomorphism from (V,P) to

(
U, f−1 (P)

)
.

Theorem 4.12: Let (V,P) be a relation information sys-
tem,

(
U, f−1 (P)

)
a f -induced relation information system of

(V,P) , f−1 a homomorphism from (V,P) to
(
U, f−1 (P)

)
and

Q ⊆ P. Then, Q is a reduct of P if and only if f−1 (Q) is a
reduct of f−1 (P).

Proof: It is similar to the proof of Theorem 4.10. �
The following example is employed to illustrate our idea in

Theorem 4.9 and 4.10.
Example 4.1: Let (U,R) be a fuzzy relation information sys-

tem, where U ={x1 , x2 , . . ., x7}, and R= {R1 , R2 , R3}. Let
R1 , R2 , R3 be as described in Tables IX–XI, respectively. De-
note R1 ∩ R2 ∩ R3 as in Table XII.

Let V = {y1 , y2 , y3 , y4}. Define a mapping f : U → V as
follows:

x1 , x7 x2 , x6 x3 , x5 x4

y1 y2 y3 y4
.

Then, f (R) = {f (R1) , f (R2) , f (R3)}, and f (R1) ,
f (R2) , f (R3) are expressed as Tables XIII–XV.

In addition, (V, f(R)) is the f -induced fuzzy relation infor-
mation system of (U,R). It is very easy to verify that f is a
compatible homomorphism from (U,R) to (V, f(R)).

We can see that f (R1) is superfluous if f(R) ⇔ R1 is su-
perfluous in R and that {f (R2) , f (R3)}, and is a reduct of
f(R) ⇔ {R2 , R3} is a reduct of R. Therefore, we can reduce
the original system by reducing the image system and reduce
the image system by reducing the original system.

Definition 4.13: Let U be a finite universe of discourse, R
a finite set of fuzzy T -similarity relations called conditional

TABLE X
RELATION R2

TABLE XI
RELATION R3

TABLE XII
RELATION R1 ∩ R2 ∩ R3

TABLE XIII
RELATION f (R1 )

attribute set, and D an equivalence relation called decision at-
tribute with symbolic values. Then, (U,R ∪ D) is called a T -
fuzzy decision system. Denote Int(R) = ∩{R : R ∈ R}; then,
Int(R) is also a fuzzy T -similarity relation.

Definition 4.14: Let Uand V be finite universes, f : U → V
a mapping from U to V , and (U,R ∪ D) a T -fuzzy decision
system. Then, the pair (V, f(R) ∪ f (D)) is referred to as a
f -induced T -fuzzy decision system of (U,R ∪ D).

Definition 4.15: Let (U,R ∪ D) be a T -fuzzy decision sys-
tem, x ∈ U,R ⊆ R, and S ⊆ R. [x]D is the equivalence class
with respect to D and the positive region of D relative to
Int(R)is defined as PosInt(R)D = ∪x∈U Int(R)ϑ ([x]D ). R is
said to be superfluous with respect to D in R if PosInt(R)
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TABLE XIV
RELATION f (R2 )

TABLE XV
RELATION f (R3 )

D = PosInt(R−R)D; otherwise, it is indispensable with respect
to D. S is referred to as a reduct of R if S satisfies the following
conditions.

1) PosInt(R)D = PosInt(S)D.
2) ∀Ri ∈ S,PosInt(R)D ⊃ PosInt(S-{Ri })D.
The collection of all indispensable elements with respect to

D in R is called the core of R with respect to D, which is
denoted as CoreD (R).

Theorem 4.16: Let (U,R ∪ D) be a T -fuzzy decision sys-
tem, (V, f(R) ∪ f (D)) a f -induced T -fuzzy decision sys-
tem, and fa compatible homomorphism from (U,R ∪ D) to
(V, f(R) ∪ f (D)), and S ⊆ R. Then, S is a reduct of R if and
only if f (S) is a reduct of f(R).

Proof: ⇒ Since

Int(R)ϑ [x]D (y) = Int(R)ϑ [x]D (y)

= ∪
{

Int(R)T zλ (y) : Int(R)T zλ ⊆ [x]D
}

we have

f
(
Int(R)ϑ [x]D

)

= ∪
{

f
(
Int(R)T zλ

)
: Int(R)T zλ ⊆ [x]D

}

= ∪
{

f (Int(R))T f (z)λ : Int(R)T zλ ⊆ [x]D
}

by (1) of Theorem 3.12. Since f is a compatible homomor-
phism from (U,R ∪ D) to (V, f(R) ∪ f (D)), by Definition
4.3 and Theorem 3.12, it follows that Int(R)T zλ ⊆ [x]D ⇔
f

(
Int(R)T zλ

)
⊆ f ([x]D ). This implies

f
(
Int(R)ϑ [x]D

)

= ∪
{

f (Int(R))f (z)λ : f
(
Int(R)T zλ

)
⊆ f ([x]D )

}

= ∪
{

Int (f(R))T f (z)λ : Int (f(R))T f (z)λ ⊆ f ([x]D )
}

= Int (f(R))
ϑ
f ([x]D )

= Int (f(R))
ϑ
f ([x]D )

= Int (f(R))
ϑ

[f (x)]f (D )

by (1) of Theorem 3.12. Since PosInt(R)D =
∪x∈U Int(R)ϑ ([x]D ), we have

f
(
PosInt(R)D

)
= f

(
∪x∈U Int(R)ϑ ([x]D )

)

= ∪x∈U f
(
Int(R)ϑ ([x]D )

)

= ∪x∈U Int (f(R))
ϑ

[f (x)]f (D ) .

Similar to the above reasoning, we have

f
(
PosInt(S)D

)
= f

(
∪x∈U Int(S)ϑ ([x]D )

)

= ∪x∈U f
(
Int(S)ϑ ([x]D )

)

= ∪x∈U Int (f (S))
ϑ

[f (x)]f (D )

for S ⊆ R. Since S is a reduct of R, it follows that
PosInt(R)D = PosInt(S)D, which implies f

(
PosInt(R)D

)
=

f
(
PosInt(S)D

)
. Hence, PosInt(f (R)))f (D) = PosInt(f (S))

f (D).
Assume that there is a fuzzy T -similarity relation Ri such

that PosInt(f (S))f (D) = PosInt(f (S-{Ri }))f (D); then, we have
PosInt(f (R))f (D) = PosInt(f (S−{Ri }))f (D), i.e.,

∪x∈U Int (f(R))
ϑ

[f (x)]f (D )

= ∪x∈U Int (f (S−Ri))ϑ
[f (x)]f (D ) .

Since [f (x)]f (D ) ∩ [f (y)]f (D ) = � and [f (x)]f (D ) �=
[f (y)]f (D ) , we have Int (f(R))

ϑ
[f (x)]f (D ) =

Int (f (S−Ri))ϑ
[f (x)]f (D ) for every x ∈ U . Since f

is a compatible homomorphism from (U,R ∪ D) to
(V, f(R) ∪ f (D)), similar to the above proof, we have

f
(
Int(R)ϑ [x]D

)
= f

(
Int(S−Ri)ϑ [x]D

)
, which implies

that Int(R)ϑ [x]D = Int(S−Ri)ϑ [x]D . Hence, PosInt(R)D
= PosInt(S−{Ri })D, which is a contradiction to the fact that S
is a reduct of R.
⇐ Similar to the above proof, and we can get the conclusion.
Corollary 4.17: Let (V, f(R) ∪ f (D)) be a f -induced

fuzzy relation information system of (U,R ∪ D) , R ∈ R, and
S ⊆ R. If f is a compatible homomorphism from (U,R) to
(V, f(R)). Then we have the following.

1) R is indispensable with respect to D in R if and only if
f (R) is indispensable inf(R) with respect to f (D).

2) S is superfluous with respect to D in R if and only if f (S)
is superfluous in f(R) with respect to f (D).

3) The image of the relative core of R is the relative core
of the image of R and the inverse image of the rela-
tive core of f(R) is the relative core of the original im-
age. That is, CoreD (R) is the core of R if and only if
Coref (D ) (f(R)) is the core of f(R).

Remark 9: If f is just a general homomorphism from (U,R)
to (V, f(R)), it can only keep the statement that S is a relative
reduct of R ⇒ f (S) if a relative reduct of f(R) is true. It
cannot guarantee that the converse statement is true.
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V. CONCLUSION

In this paper, we have study the communication between in-
formation systems with fuzzy relations. We point out that a map-
ping between two universes can induce a fuzzy binary relation of
one universe according to the given fuzzy relation on the other
universe. For an information system with fuzzy relations, we
can consider it as a combination of some fuzzy approximation
spaces on the same universe. The mapping between fuzzy ap-
proximation spaces can be explained as a mapping between the
given fuzzy relation information systems. Based on these obser-
vations, we have explored properties of fuzzy relation mappings
and discussed the characteristics of fuzzy relation information
systems and found that attribute reductions of the original sys-
tem and its image system are equivalent to each other under
homomorphism.

These results illustrate that some characteristics of a fuzzy
relation information system are guaranteed in its image system,
which may have potential applications in knowledge reduction,
decision making, and reasoning about data, especially for the
case of two information systems. These results will also help in
forming a systematic and theoretic framework for information-
granule communication analysis. However, some results in this
paper are right only under some sufficient conditions. How to
explore the sufficient and necessary conditions of these results
is our future work.
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