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Communication Between Information Systems
Using Fuzzy Rough Sets

E. C. C. Tsang, Changzhong Wang, Degang Chen, Congxin Wu, and Qinghua Hu

Abstract—Communication between information systems is a ba-
sic problem in granular computing, and the concept of homomor-
phism is a useful mathematical tool to study this problem. In this
paper, some properties of communication between information sys-
tems based on fuzzy rough sets are investigated. The concepts of
fuzzy relation mappings between universes are first proposed in
order to construct a fuzzy relation of one universe according to
the given fuzzy relation on the other universe. The main proper-
ties of the mappings are studied. The notions of homomorphism
of information systems based on fuzzy rough sets are then pro-
posed, and it is proved that properties of relation operations in the
original information system and structural features of the system,
such as approximations of arbitrary fuzzy sets and attribute re-
ductions, are guaranteed in its image system under the condition
of homomorphism.

Index Terms—Attribute reduction, fuzzy relation mappings,
fuzzy rough sets, homomorphism, information systems.

1. INTRODUCTION

NFORMATION systems, which are also called knowledge
I representation systems, are formalisms to represent knowl-
edge of some objects in terms of attributes and their values. Over
the past few decades, many topics on information systems have
been widely investigated, which include some successful ap-
plications in information processing, decision analysis, process
control, and knowledge discovery [2]-[4], [6]-[20], [25]-[37],
[39]-[45], [47]-[50]. Among these application topics, commu-
nication between information systems is an interesting and im-
portant one in the framework of granular computing [6], [28].
In light of the diversity of information systems, it is sometimes
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necessary to transmit information between information systems.
For example, analog and digital conversion in signal processing,
data fusion [16], [27], and equivalent attribute reductions and
rule extractions [20], [38] need to handle information transfor-
mations. These problems motivate us to study the relationship
between information systems.

Communication is directly related to the issue of transforma-
tions of information systems while preserving their basic proper-
ties. More formally, we propose the problem as follows: How to
represent information transferred between different information
systems. As explained in [6] and [28], communication allows
one to translate the information contained in one granular world
into the granularity of another granular world and thus pro-
vides a mechanism to exchange information with other granular
worlds. From the mathematical viewpoint, this kind of com-
munication can be explained as comparing some structures and
properties of different information systems via mappings, which
are useful tools to study the relationship between information
systems. The notion of homomorphism based on rough sets [24],
which was introduced by Grzymala-Busse in [9], was used to
study information communication in [10]. In fact, a homomor-
phism can be viewed as a special mapping between information
systems, and the notion of homomorphism on information sys-
tems is useful in aggregating sets of objects, attributes, and
descriptors of the original system [10], [20], [28]. However, the
study on the communication between information systems by
the notion of homomorphism has not gained enough attention.
Up to now, there are only a few research works that focus on
this topic. In [10], Grzymala-Busse depicted some conditions
which make some important attributes to be selective in terms
of endomorphism of a complete information system. In [20],
the features of superfluousness and reducts of complete infor-
mation systems under some homomorphism is discussed. The
above two pieces of work are both performed in the framework
of Pawlak’s rough sets [24], [25] and are mainly concentrated
on the problem of attribute reduction under homomorphism.
They did not discuss the issue of set approximations. We know
that set approximations and attribute reductions in information
systems are central notions in decision making, data analysis,
reasoning about data, and other subfields of artificial intelli-
gence [1]-[5], [12]-[19], [21]-[26], [30]-[37], [39]-[46]. For
these reasons, Wang et al. further investigated some homomor-
phic properties of set approximations and attribute reductions in
information systems based on binary relations and proved that
attribute reductions in the original system and image system
are equivalent to each other under the condition of homomor-
phism [38]. It is noted that their studies are only restricted to the
generalized rough sets based on binary relations.
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In some situations, because of noises, inaccuracy, and human
subjectivities, the boundaries of some attribute values are vague
or ambiguous. For instance, low inflation rate, high pressure,
and medium income are just a few illustrative cases. On the
other hand, the values of some attributes in information systems
could be real-valued or continuous. This kind of information
system is quite different from the information system with dis-
crete attribute values [38]. The method to study the commu-
nication between information systems with discrete attributes
is not directly suitable to deal with continuous attributes. Nu-
merical attributes can be segmented into several intervals with
discretization algorithms [23] and then handled using the above
methods, but the quality of corresponding results depends on
discretization in this case. As argued in [46], discretization al-
gorithms always lead to information loss, and this may influence
the final decision results. In order to directly handle this type
of information systems, a continuous attribute can be fuzzified
by using the similarity degree of real values or by defining a
mapping for such an attribute to induce a fuzzy binary rela-
tion [3]-[8], [11], [13]-[16], [26]-[32], [35], [39], [46]. How to
investigate information communications between information
systems with continuous attributes is the problem we would
like to address in this paper.

The theory of fuzzy rough sets [5], as a generalization of
classical rough sets [24], [25], has the capability of utiliz-
ing databases with vagueness and fuzziness by making use
of the similarity degree of attribute values. This theory has
been demonstrated to be useful in solving a variety of prob-
lems [4], [8], [11]-[15], [26], [27], [35], [39]. In this paper, we
introduce fuzzy rough sets as a basic tool to study the commu-
nication between information systems and represent some new
contributions to the development of this theory. By Zadeh’s ex-
tension principle, we develop a method to define a fuzzy binary
relation on a universe in terms of a fuzzy relation on another
universe. In this sense, our method is a mechanism for com-
municating between two information systems. We then define
the concepts of homomorphism between information systems
based on fuzzy binary relations. Under the condition of ho-
momorphism, some characteristics of relation operations in the
original system and some structural features of the system, such
as set approximations and attribute reductions, are guaranteed
in its image system.

The remainder of this paper is organized as follows. In
Section II, we review the relevant concepts in rough set the-
ory. In Section III, we present the definitions of fuzzy relation
mappings and investigate their properties. In Section IV, we in-
troduce the concepts of homomorphism between information
systems based on fuzzy binary relations and study their proper-
ties. Conclusions are drawn in Section V.

II. PRELIMINARIES

This section mainly reviews some basic notions of rough and
fuzzy rough sets related to this paper.
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A. Rough Sets

An information system is a pair [.S = (U, C), where U =
{z1,29,...,2,} is a nonempty finite set of objects and C' =
{a1,a9,...,a,} is a nonempty finite set of attributes. With
every subset of attributes B C C, we associate a binary relation
IND(B), which is defined as

IND(B) = {(2,y) : a(x) # a(y).Ya € B}.

IND(B) is obviously an equivalence relation and IND(B) =
NuepIND({a}). By [z]z, we denote the equivalence class of
IND(B) including x. For any subset X C U,BX ={z € U :
[z]p C X} and BX ={z €U : [z]p N X # ©} are called
B-lower and upper approximations of X in .5, respectively.

An attribute @ € B C C is superfluous in B if IND(B) =
IND(B — {a}); otherwise, a is indispensable in B. The collec-
tion of all indispensable attributes in C'is called the core of 1.5.
We say that B C (' is independent in I.S if every attribute in B
is indispensable in B. B C C'is called a reduct in 1.5 if B is
independent and if IND(B) = IND(C)).

A decision system is a pair DIS = (U, C' U {d}), where d is
the decision attribute, and C' is a condition attribute set. The
positive region of d relative to C'is defined as

POS¢ (d) = Uxcyja BX.

Leta € B C C.IfPOSp(d) = POSp_(,}(d), thenais called
relatively dispensable in B; otherwise, a is said to be relatively
indispensable in B. If every attribute in B is relatively indis-
pensable in B, we say that B C C'is relatively independent in
DIS. B C (' is called a relative reduct in DIS if B is relatively
independent in DIS and POSp (d) = POS¢ (d).

B. Fuzzy Sets and Fuzzy Logical Operators

Let IS = (U,C = {ay,as,...,a,}) be an information sys-
tem. If some attributes in C' are real-valued or continuous, then
each of them can induce a fuzzy relation by defining a similar-
ity function. There are many discussions on how to construct
fuzzy relations by real-valued or continuous attributes in the
literature [8], [13]-[15], [27], [39]. In [8], a complete summa-
rization on this topic is provided. For a detailed introduction to
the notions, see these references.

Let U be auniversal set. A fuzzy set A, or rather a fuzzy subset
A of U, is defined by a function assigning to each element x of
U avalue A (z) € [0, 1]. We denote by F' (U the set of all fuzzy
subsets of U. For any A, B € F' (U), we say that A is contained
in B,denotedby A C B,if A (z) < B (z)forallz € U, and we
say that A = Bifandonlyif A C Band B C A. The support of
afuzzy set Aisasetdefinedassupp (4) = {z € U|A (z) > 0}.
Given A, B € F (U), the union of A and B, denoted as A U B,
is defined by (AU B) (z) = A(z) V B (x) for all x € U, the
intersection of A and B, which is denoted as A N B, is given by
(ANB)(x)=A(x) ANB(z)forallz € U.

In [48], Zadeh proposed the extension principle, which has
become an important tool in fuzzy set theory and its applications.
Let U and V be two sets and f be a mapping from U to V'; then,
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f can be extended to a mapping from F' (U) to F' (V). That is

f:F(U) —F(V),A — f(A) e F(U) YAeF(U)

and f(A) (Y) = SUDP, v, 1 () =y A (z) forany y € V.
Conversely, the mapping f : U — V can induce a mapping
f~t from F (V) to F (U) as follows:

fLF(V)=F(U),B-f"'(A) eF(U)

and ! (B) (z) = B(f (z)) forallz € U.

A triangular norm, or shortly ¢-norm, is an increasing, as-
sociative, and commutative mapping 7" : [0, 1] x [0,1] — [0, 1]
that satisfies the boundary condition (Vz € [0,1], T'(z,1) = ).

The most popular continuous ¢-norms are the following:

1) the standard min operator Ty (x,y) = min{x, y};

2) the algebraic product Tp (z,y) = = - y;

3) the bold intersection 77, (z,y) = max{0, = +y — 1}.

A triangular conorm, or shortly ¢-conorm, is an increasing, as-
sociative, and commutative mapping S : [0, 1] x [0,1] — [0, 1]
that satisfies the boundary condition (Vz € [0, 1], S(z,0) = x).

Three well-known continuous t-conorms are given as
follows:

1) the standard max operator Sy (z,y) = max{x,y};

2) the probabilistic sum Sp(z,y) =z +y —z - y;

3) the bounded sum Sy (x,y) = min{l, = + y}.

A negator N is a decreasing mapping [0, 1] — [0, 1] satis-
fying N(0) =1 and N(1) = 0. The negator N,(z) =1—=z
is usually referred to as the standard negator. A negator NN is
called involutive iff N(N(x)) = z for all z € [0, 1], every in-
volutive negator is continuous and strictly decreasing. Given a
negator IV, a t-norm 7" and a t-conorm S are dual with respect
to N iff De Morgan laws are satisfied, i.e., S(N(z), N(y)) =
N(T(z,)), T(N(x), N(y)) = N(S(z,1)).

For every A € F(U), the symbol coy will be used to denote
fuzzy complement of A determined by a negator N, i.e., for
every x € U, (coy A)(x) = N(A(x)).

Given a triangular norm 7', for any o, v € [0, 1], let 9(a, y) =
sup{6 € [0,1] : T(a, 8) < ~}; then, the binary operation ¥ on
[0,1] is called a R-implicator based on 7. If T' is lower semi-
continuous, ¥ is called the residuation implication of 7', or the
T-residuated implication. The properties of T-residuated impli-
cation 1} are listed in [46].

For a t-conorm S, the operator ¢ is defined as o(a,b) =
inf{c € [0,1] : S(a,c) > b}.If T"and S are dual with respect to
an involutive negator IV, then ¥ and ¢ are dual with respect to the
same involutive negator N, i.e., o(N(a), N(b)) = N(9(a,b))
and ¥(N (a), N(b)) = o(N(a,b)). The properties of o are listed
in [21] and [46].

VB e F(V)

C. Fuzzy Rough Sets

Let U be a nonempty universe. By a T’-similarity relation R,
we mean a fuzzy relation on U which is reflexive, symmetric,
and T-transitive. The similarity class [z]p with z € U is a fuzzy
set on U defined by [z]r(y) = R(x,y) for all y € U; clearly,
every similarity class is a normal fuzzy set.

Approximation operators of fuzzy sets can be summarized as
the following four operators:

1) T-upper approximation operator:

Fr A(s) = sup T(R(r. ), A(v)

2) S-lower approximation operator:
RsA(z) = in[f] S(N(R(z,u)), A(u))
- ue

3) o-upper approximation operator:

R, A(z) = supo(N(R(z,u)), A(u))

uel

4) ¢-lower approximation operator:

Ry A(z) = inf 0(R(z,u), A(u))

for every fuzzy set A € F(U), where R is an arbitrary
fuzzy relation.

These approximation operators have been studied in detail in
[46] from constructive, axiomatic, lattice, and fuzzy topological
viewpoints. Clearly, the above lower and upper approximations
are defined by membership functions; they are not explicitly
defined as the union of some basic granular fuzzy sets, and the
similarity classes cannot play this role since they are normal
fuzzy sets. This motivates researchers to consider granulation
of fuzzy points in [1].

Suppose U is a universe of discourse; 7, .S, and N are fuzzy
logic operators defined in Section II-B, and 7" and S are dual
withrespectto V. Let Rbe afuzzy relationonU.Forz € U, A €
33 L " which
is called a fuzzy point. We have Rrx;(y) = T(R(z,y), 7).
According to the observationin [1], {RiTx;\ cx e U e (0, 1]}
can be used as the basic information granules to reconstruct
lower and upper approximation of fuzzy sets, That is, if R
is a fuzzy T-similarity relation on U, then Ry A = U{Rrx; :
Rra, CA}and R A = U{RiTxA(m) cx e U}

(0,1], z, is a fuzzy set defined as z; (y) = {

III. Fuzzy RELATION MAPPINGS AND THEIR PROPERTIES

Mapping is a basic mathematical tool to communicate be-
tween two fuzzy sets. Similarly, by mapping, we could study
the communication between information systems using fuzzy
relations. In this section, we first define the notions of fuzzy
relation mappings by Zadeh’s extension principle and then
study their properties. Let U and V be two universes. The
classes of all fuzzy binary relations on U and V' will be de-
noted by R (U x U) and R (V x V), respectively. Let us start
with introducing the following concepts by Zadeh’s extension
principle.

Definition 3.1: Let [ : U — V,u| — f(u) € V;u e U. By
the extension principle, f can induce a mapping from
R(U xU) to R(V x V) and a mapping from R (V x V) to
R(U xU),ie.,

fiRUxU)— RV x V),R|
— f(R) e R(V x V),VR € R(U x U)



f(R)(2,y)
{ sup  sup R(u,v), (2,y) € f(U)x f(U)
= q uefH(z)vef(y)
0, (z,y) & f(U) x f(U).
LRV V) = RU x U),
P— f"YP)eR(U x U),YP € R(V x V)
FH(P)(u,v) = P(f(w), f(v)).

Then, f and f ~! are called fuzzy relation mapping and inverse
fuzzy relation mapping induced by f, respectively. f (R) and
f! (P) are called fuzzy binary relations induced by f on V
and U, respectively.

Remark I: When R and P are crisp binary relations on U
and V/, respectively, the definitions of f (R) and f~! (P) will
be reduced to the definitions of the images of crisp binary rela-
tions in [38], respectively. For a given element v € U, we know
that R (u,v),u € U is a fuzzy set on U. If f~! (y) = v, then
f(R) (x,y) = sup,_ () R (u,v)foranyx € f (U), whichco-
incides with Zadeh’s extension principle. Thus, Definition 3.1
is an extension of the extension principle. So that there is no
confusion in the subsequent discussion, we simply denote f and
fVas fand f, respectively.

Definition 3.2: Let U and V be two universes, f : U — V a
mapping from U to V,and R, Ry, Ry € R (U x U).Let [z]; =
{y e U: f(y) = f(x)}; then, {[z]; : € U} is a partition on
U. For any z,y € U, if one of the following statements holds:

1) Ry (u,v) < Ry (u,v) forany (u,v) € [z], X [y,

2) Ry (u,v) > Ry (u,v) forany (u,v) € [z]; x [y];
then f is called consistent with respect to R; and R,. If one of
the following statements holds:

1) Ry (u,v) < Ry (u,v) forany (u,v) € [z]; x [y],

2) Ry (u,v) > Ry (u,v) forany (u,v) € [z]; x [y],
then f is strictly consistent with respect to R; and Rj. For
any u, s, € [z]; and v, t € [y];, if R (u,v) = R (u,?), then fis
called predecessor-compatible with respect to R; if R (u,v) =
R (s,v), then f is called successor-compatible with respect to R;
if R (u,v) = R(s,t), then f is called compatible with respect
to R.

It is easy to check that a function f is compatible with re-
spect to R if and only if f is both successor-compatible and
predecessor-compatible with respect to R. Let A € F'(U) be a
fuzzy set on U. Similar to Definition 3.2, we will say f is com-
patible with respect to A if A (u) = A (v) for any u,v € [z];,
where = € U. From Definition 3.2, an injection is trivially both
a consistent and a compatible function.

Proposition3.3:Let R, Ry, Ry € R (U x U).If f is compat-
ible with respect to I, I?;, and Ry, respectively. Then

1) f is compatible with respect to R; U Ry;

2) f is compatible with respect to R N Ry;

3) f is compatible with respect to the complement of R.

Proof: Straightforward.

For a predecessor-compatible (successor-compatible) func-
tion, it has the similar properties for R; U Ry, R1 N Ry and the
complement of R. Here, U and N represent max and min set
operations, respectively.
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Proposition3.4:Let Ry, Ry € R (U x U).If f is compatible
with respect to R; and R, respectively, then f is consistent with
respect to Ry and R;.

Proof: Straightforward.

Remark 2: 1f f is only predecessor-compatible, or successor-
compatible with respect to R; and Ry, we cannot guarantee that
f is consistent with respect to R; and R». It is also noted that
the converse of Proposition 3.4 is not necessarily true.

The following theorem discusses properties of fuzzy binary
relations under the relation mappings f and f~', respectively.

Theorem 3.5: Let f:U — V, and f be surjective, R €
R (U x U),and P € R (V x V). Then, we have the following.

1) If R is reflexive, then f (R) is reflexive; if P is reflexive,

then f~! (P) is reflexive.

2) If R is symmetric, then f (R) is symmetric; If P is sym-

metric, then f~! (P) is symmetric.

3) If P is T-transitive, then f~! (P) is T-transitive.

4) If f is compatible with respect to R, then R is T'-transitive

if and only if f (R) is T-transitive.

Proof: 1) Let R be reflexive; we need to prove that f (R) is
reflexive. Since f is surjective, it follows that for any y € V,
there must exist « € U such that f (z) = y. By the reflexivity
of R, we have R (z,z) = 1. From the definition of f (R)

f(R)(y,y) = sup sup R (u,v)> R(xz,x)=1.

ueft(y)vef(y)

Thus, f (R) is reflexive.

Let P be reflexive; we need to prove that f ! (P) is reflexive.
For any 2z € U, let f (x) = y € V. By the reflexivity of P, we
have P (y,y) = 1. Thus

FHP) (@2) =P (f(2), f(2) =P(y.y) =1.

Hence, f~1 (P) is reflexive.
2) Let R be symmetric; we need to prove that f (R) is sym-
metric. Forany z,y € V

f(R) (I,y) = Sup sup R(U7U)

ueft(z)vef(y)

= sup sup R (v,u)
vefHy)uef!(z)

= [ (R)(y,x)

by the symmetry of R. Hence, f (R) is symmetric.
Let P be symmetric; we need to prove that f~* (P) is sym-
metric. For any u,v € U

F7H(P) (u,0) = P(f (u), f (v))
=P(f (), f(u))
=71 (P)(v,u)

by the symmetry of P. Hence, f~! (P) is symmetric.
3) Let P be T-transitive; for any x,y,z € U

T(f(P)(x,y), f " (P)(y.2))
=T(P(f(x),fW),P(f(y),[f(2))
<P(f(x),f(2)=f"(P)(x,2)

by the transitivity of P. Hence, f~* (P) is transitive.
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TABLE I
SIMILARITY RELATION R

T-1 X1 X5 X3 X4
X 1 0.25 0.25 0.5
X 0.25 1 1 0.25
X3 0.25 1 1 0.25
Xy 0.5 0.25 0.25 1

4) = Forany x,y, z € V, since f is surjective, it follows that
there must exist ug, vy, ty € U such that

f(U()) = m,f(’U()) = yaf(t()) =z
Since f is compatible with respect to R, we have
R(“Ova) = R(ua U) aR(U07t0) = R(U,t)

for any (u,v) € f~'(x)x f1(y) and (v,t) € f~(y) x
f~1(t). Hence

T (f(R)(z,y), f(R)(y;2))
=T su sup R (u,v)),
(e, m, 70e0)

( sup  sup R(s,t)))

sefH(y) tef 1 (2)

=T (R (ug,v0), R (vo,t9)) < R(ug,to)

by the transitivity of R. Similarly

f(R)(x,z) = sup sup R (u,t) = R (ug,to) .
uef~H(x)tef1(z)
Therefore, T (f (R) (2,3),f (R) (y.2)) < f (R) (z,2),

which implies f (R) is T-transitive.

< Since [ is compatible with respect to R, we
have R (ui,v1) = R (u,v) for any (uj,vi) € f~' (f (u)) x
FL(F ).

Thus

FHR) (u,0)=

sup sup
fur)=f(u) flor)=f(v)

Therefore, f~! (f (R)) = R. Since f (R) is T-transitive, it
follows from (3) and f~! (f (R)) = R that R is T-transitive. 0

Remark 3: In general, a fuzzy relation mapping f can preserve
the reflexivity and symmetry of a fuzzy relation, but it cannot
preserve the transitivity of a fuzzy relation. This means that
it needs more conditions to keep the transitivity of a fuzzy
relation invariant. Below, we give an illustrative example. For
simplification, we write Table 1 as T-1, Table 2 as T-2, and so
on in data tables.

Example 3.1:LetU = {x1,29,23,24},V = {vy1,92,y3}. R
is a sup-min similarity relation on U given in Table I.

Define a mapping f; : U — V as follows:

L1, T2 T3 Ty
Y1 Y2 Ys

Then, f1 (R) can easily be computed and is given in Table II.

R (u1,v1) = R (u,v).

TABLE II
RELATION f7 (R)

T-2 Y1 Y2 )3
Y1 1 1 0.5
s 1 1 0.25
V3 0.5 0.25 1

TABLE III
RELATION f3 (R)

T-3 b)) Y2 Y3
i 1 0.25 0.5
Vs 0.25 1 0.25
V3 0.5 0.25 1

Define a mapping f5 : U — V as follows:

x1 T2, T3 Xy
hn Y2 Y3

Then, f> (R) can easily be computed and is given in Table III.

We can easily verify that f; is not compatible with respect to
R and f;(R) is not sup-min transitive, while f5 is compatible
with respect to R and f>(R) is sup-min transitive. O

The following theorem discusses the properties of fuzzy re-
lation operations under a fuzzy relation mapping f.

Theorem3.6:Let f : U — V, Ry, Ry € R(U x U); then, we
have the following.

) f(R)=0& R=0.

2) f(RiURy) = f(R1)U [f(R).

3) f(RiNRy)C f(R1)N f(Ry); if f is consistent with

respect to R; and Ry, then the equality holds.
Proof: 1) = Since f (R) = @, we have for any z,y € V
sup sup R(u,v)=0

f(R)(z,y) =
ueft(z)vef ' (y)
s V(u,v) e f(z)x f1(y),R(uv)=0.
Therefore, R (u,v) = 0 for any u,v € U.
<« Itis clearly true.
2) f(RiURy) (z,y) =
uwef(z)vef(y)

= swp s (Ri (u,0) V R (1,0))
ueft(z)vef(y)
= (f(R) U f(R)) (z,y).

3)Forany z,y € V
f(RiNR) (z,y) =

sup  sup (RyURy) (u,0)

sup  sup (R; N Ry)(u,v)

wef~t(z)vef(y)

= sup  sup (R1 (u,v) A Ry (u, v))

wef~t(z)vef(y)

S( sup  sup Ry (u,v))
uef1(x) vef 1 (y)

/\( sup sup R (u,v))
ueft () vef(y)

= ([ ()N f(R)) (x,y).



Now, we prove that if f is consistent with respect to R; and
Ry, then the equality holds. By the above result, we only need
to prove the inverse inclusion. Since f is consistent with respect
to R; and R», it follows from Definition 3.2 that R, and Rs
satisfy one of the following conditions:

1) Ry (u,v) < Ry (u,v), and 2) Ry (u,v) > Ry (u,v) for
any (u,v) € f~1 (z) x f~' (y).

For case 1, we have

f(RiNRy)(x,y) = sup sup (RyNRy)(u,v)
uef-1(z)vef-1(y)
= sup sup  (Ry (u,v) N Ry (u,v))
uef -1 (z)vef(y)
= sup sup Ry (u,v)
uef-1(z)vef1(y)

and

= f (Rl) (m,y) A f (RQ) (m,y)

:( sup sup Ry (u, v))
uef(z)vef(y)

/\( sup  sup R (u,v))
uef~(z)vef~1(y)
= sup

sup Ry (u,v)
wef 1 (z)vef-1(y)

= f(R1)($,y)

(f (R1) N f(R2)) (w,y)

Hence, f (Ry NRy) = f(R1)Nf(R ) Similarly, for case
2, we also have f (R N Ry) = f (Ry) N f (Ry); therefore, we
conclude the proof.

Proof: Straightforward. O

Remark 4: Equation (3) in Theorem 3.6 provides a sufficient
condition to preserve the intersection operation of fuzzy rela-
tions under a fuzzy relation mapping f. In general, a fuzzy
relation mapping f does not keep invariant the intersection of
fuzzy relations. In the following we give an example to illustrate
the case.

Example  32: Let U=/{x,2z2,23,24},andV =
{y1,y2,y3}. R1 and R, are two fuzzy relations on U,
which are given in Tables IV and V, respectively.

Define a mapping f : U — V as follows:

X1, 22 T3, X4
Y1 Y2

Then, f (Ry), f (Ry),and f (R; N Ry) can be computed and
are given in Tables VI, VI, and VIII, respectively. We can see
that f (R N Ry) C f(Ry) N f (R2). If we define a mapping
f:U—-Vas

L1, T4 T2 T3
n Y2 Ys

f(R1) N [ (Ry).

we can verify that f (R; N Ry) =
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TABLE IV
RELATION R

T-4 X Xo X3 X4
X 0.7 0.4 0.7 0.7
Xa 0.8 0.3 0.5 0.8
X3 0.6 0.3 0.2 0.6
Xy 0.7 0.4 0.7 0.7

TABLE V

RELATION Ry

T-5 x| X X3 Xy
X 0.6 0.5 0.7 0.6
X 0.2 0.8 0.5 0.2
X3 0.7 0.9 0.2 0.7

X4 0.6 0.5 0.7 0.6
TABLE VI
RELATION f(Ry)
T-6 N1 Y2
Y 0.8 0.8
y2 0.7 0.7

By Theorem 3.6, we can obtain the following corollary.

Corollary 3.7: Let f:U — V,Ry,Ro,..., R, € R(U x
U); then

D f (U?:1 R;) = U?:l f(R).

2) f(NZ, Ri) €Ny f(Ry); if f is consistent with re-
spect to any two of fuzzy relations R;, Rs, ..., R,, then
the equality holds.

Corollary 3.8:1f f is compatible with respect to each of fuzzy
relations Ry, Ry,...,R, € R(U xU), then f(N_, R;) =
m?:1 f (RT)

The following theorem discusses operations of fuzzy relations
under an inverse fuzzy relation mapping f~'.

Theorem 3.9: Let f : U — V, P, Py, P, € R(V x V); then

h f(e)=0o
2) Iffls surjective, f ( )=0 < P =0.
3) fH(PAUR)=f(P)UFT(P).
4 fHPnR) = (P)NfH(R).
5 LCP=f"! ( ) C T (R).
Proof: Straightforward. O
Theorem 3.10: Let f:U—V,ReR(UxU),PeR
(V x V); then
) f(f7'(P)) C P;if fis surjective, then the equality
holds.
2) f1(f(R)) 2 R; the equality holds if and only if f is
compatible with respect to R.
Proof: 1) For (x,y) € f(U)x f(U)CV xV,f1(x)#
@ and f~! (y) # @. Thus
FUHP) (@y) = sup  sup f(P)(u,v)
uefH(x)vef(y)
= sup  sup P(f(u),[f(v))
ueft(z)vef(y)
= P(z,y).
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For (z,y) ¢ f(U) x f(U) satisfying (z,y) €V xV,
f(f’ (P )) (z,y) =0 by the Definition 3.1. Hence
F(F71(P) (2,y) € P(x,y).

2) Since

FHER) (uyv) = f(R) (f (u), f (v))

= sup  sup R(z,y) > R(u,0)
F@)=F(w) Fy)=1(v)

for any (u,v) € U x U, we have f~! (f (R)) 2 R.

If f is compatible with respect to R, we have R (x,y) =
R (u,v) forany (z,y) € f~1 (f (w) x f~ (f (v)).

Thus
FH(R)) (wyv) =

sup sup R (z,y) = R(u,v).

Fl)=f(u) f(y)=F(v)

Therefore, f~! (f (R)) = R, and the sufficiency holds.

Suppose f~!(f(R)) = R. If there are two pairs of el-
ements (z,y),(u,v) € U x U satisfying f (x) = f(u) and
f(y)=f(v),but R (z,y) # R (u,v). Without loss of general-
ity, we assume that R (z,y) < R (u,v). On the other hand, by

1 (f(R)) = R, we have
R(z,y) = (f(R) (z,y)
=f(R)(f(z),f )

= sup sup R (u,v) > R(u,v).
flu)=f(x) fu)=F(z)

This is a contradiction to R (z,y) < R (u,v), and we get the
necessity. O

By Proposition 3.3 and Theorem 3.10, we can obtain the
following corollary.

Corollary 3.11: Let f:
U),andPl,PQ,...,P,,L € §R(V X V) then

D F(f (N2, P)) SNy P if f is surjective, then the

equality holds;

2) (N2, Ri)) 2N, Ri; the equality holds if f is

compatible with respect to R; (i < n).

The following theorem shows that under a certain condi-
tion, the images of fuzzy information granules on U and V'
can be viewed as the fuzzy information granules on V' and U,
respectively.

Theorem 3.12: Let f be a mapping from U to V,x € U and
X € [0,1]. Let Rrx; be a T-fuzzy information granule on U.
Then

1) f(Rraz;) C f(R)pf (x),;if f is successor-compatible

with respect to R, then the equality holds. In particular, if
T is a strictly increasing function, then the equality holds
if and only if f is successor-compatible with respect to R.
2) f7(f (Rrw:.)) 2 Ry If f is predecessor-compatible
with respect to R, then the equality holds. In particular, if
T is a strictly increasing function, then the equality holds

if and only if f is predecessor-compatible with respect to
R.

U_)‘/:R17R27~-~7Rn E%(UX

Proof: 1) By the definition of Rrx,, it follows from the
properties of 7" that

sup Rrx; (v)
vef 1 (y)

= sup T (R(z
vef 1 (y)

= T(U;up( )R(m,v) ,)\)

f(FTxk) (y) =
,0) 5 4)

:T(

Hence, f (Rrx1) (y) C f (R); f (2); (y).

If f is successor-compatible with respect to R, then we have
SUDycf1 (f(a)) SUPves 1 (y) 1B (u,v) = sup,ep ) B (z,v).
Thus, f (Rrxy) = f (R),f (2),.

On the contrary, let 7" be a strictly increasing function and
f (Rrz;) = f (R)y f (x),. As shown above, we have

sup sup R (u,v) ,A).
uef(f(w))vef(y)

sup R (x,v) ,A)
veft(y)

f (Fra) =7
T( sup sup R(u,v),)»)
uef(f(@))vef(y)

=[(R)rf(2),.

Since 7' is a strictly increasing function, it follows that
SUDy -1 (y) R (2, 0) = SUP, 1 (f(2)) SUPves-1 () 1 (U, 0).
Thus, R (7,v) = sup,cs-1(f(z)) 1 (u,v). By the arbitrariness
of z € U, we know that f is successor-compatible with respect
to R.

2)

f (f (Rrzx)) (y) = f (Rras) (f ()

= sup  Rra(u)

uef=1(f(y))
= sup

uef1(f(y))
= T( sup

uef1(f(y))

DT (R(z,y),A)
= Rra, (y).

T(R(z,u),A)

R(x,u),)\)



If f is predecessor-compatible with respect to R, then
SUPycr-1(f(y)) I (z,u) = R (z,y). Thus, the equality holds.

On the contrary, let 7" be a strictly increasing function, and
7 (f (Rrw:)) = Rra,. As shown above, we have

sup
uwef(f(y))

=T(R(z,y),1) = Ry, (y).

I (f (Rra)) () =1 R(x,u), )

Since T is a strictly increasing function, it follows that
SUPyef-1(f(y)) B (z,u) = R(z,y). By the arbitrariness of y €
U, we know that f is predecessor-compatible with respect to
R. O

The following theorem discusses the issue of approximations
under fuzzy relation mappings f and f~!, respectively.

Theorem 3.13: Let f:U—V,ReR({UxU),P ¢
R(V xV),Aec F(U), and B € F(V); then, we have the
following.

1) If f is compatible with respect to R, then f(apr,A) C
@f(l?)f (A); in particular, if f is also compatible with
respect to A, then the equality holds.

2) If f is compatible with respect to R, then f (aprp A) C
apr () f (A); in particular, if f is also compatible with
respect to A, then the equality holds.

3) For ¢€0,1], let A¢(u)=¢&VueU. Then
FlaprpAc) = apr; ) f(A¢) = Ac.
4) For ¢€0,1], let A¢(u)=¢&VueU. Then

F@prrAe) = aprpp) f (D) = Ac.

5) f! (@PB) Capr, [ (B); the equality holds

iff f is surjective. '

6) [~ (@prpB) 2 apry-1(pyf" (B); the equality holds iff

f is surjective.

Here apr, is referred to as lower approximation operator
such as Rg or Ry. apry is referred to as upper approximation
operator such as Ry or R,.

Proof: 1) Forany z, s € V, since f is compatible with respect
to R, it follows from Definition 3.2 that R (y, z) = R (yo, 20)
for any (y,2), (v0,20) € f~! (x) x f~!(s). For S-lower ap-
proximation operator, we have

sup

f(@RA) () =
yef ()

(m ,A) (y)

— sup {me(N(R(y,z)),A(z))}

yef(z) (#€U

= Inf S(N (R (y0,2)),A4(2))

= (@RA) (y0),90 € f' (2)

and
(apr; gy f (A)) (@) = nf S (N (f(R) (w,5)), f (4) (5))
“apsO( g, m, RO9) o A)
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= inf S(N (R (w0, 20))., (

sup A (w)))

wef1(s)
> inf S (N (R (y0:20)), A (20)) (20 € f71 ()

= inf S(N (R (yo,2)),A (2))

zp €U
= (apr, A) (wo) ,yo € f* (2).

Thus, f(%RA) C @f(ﬂ)f (A). Specially, if f is also
compatible with respect to A, we have A (w)= A(z) for
any w, z € f~' (s), which implies sup,,c -1 () A (w) = A (2).
Similarly, we can conclude that f (apr R A) = TR f(A).

Similar to the above proof, we also have the same result for
©—lower approximation operator.

2) For T'—upper approximation operator, we have

f(aprpA) (z) =

sup
yef(z)

= sup ){SupT(R (y,Z),A(Z))}

yeft(x) ~zeU

(@prrA) (y)

= su sup T(R(y,z),A(z
Zeg{yef% (R(,2),A(2)}
:jlelgT(R(yOaz)aA(z))

= (aprrA) (yo) ,y0 € [ (2)

and

(@7 1) f (A)) () =sup T (f (R) (x,s), f (A) (s))

seV
:supT( sup sup R(y,z), sup A(w))
seV o Myefl(z) zef1(s) wef1(s)
=supT((R(yo, %), sup A(w))

seV wef1(s)

> SE‘E)T(R (0,20), A (20)) (20 € f7'(5))

= sup T (R (yo,20), A (%))

zo €U

= (@prrA) (yo), 0 € [ ().

Thus, f(aprrA) C apryp)f(A). Similar to the above
proof, we have the same result for o-upper approximation
operator.

For S-lower approximation operator, we have

apr, B¢ (z) = inf S(N (R (2,9)), 8¢ (y)) = inf Ag ()

yeU yelU
=¢{=A¢ ()

which implies A¢ C apr, A¢. Hence, A¢ = apr, A¢. Thus

flaprpA¢) (z) = £ (A¢) (z) = S )Aﬁ (y) = ¢
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Since

o (80 @) = inf S (N

yelU

apr (f (B) (z,9)) (A¢) (y))

— inf S(N

inf sup sup R (u,0), f () (v))

uef(x)vef(y)
=&=[(A¢) (2)
we have apr apr; g f (A¢) = f (A¢), which implies

ml (Be) = [(Ae) = ¢

Similar to the above proof, we have the same result for
1—lower approximation operator. Thus, we complete the proof.

4) Similar to the proof of (3).

5) For S-lower approximation operator, we have

> f(A¢) (y)

apr .

f~Haprp, B) (x) = apr, B (f («))

— yigéS(N (P(f(z),y),B(y))
and
apr,, pyJ 7 (B) ()
= inf (N (7 (P)(2.2)) . £~ (B) (=)
= Inf S(N (P (f(2), (). B(f ()
> yigéS(N (P(f(x),y)),B(y))

by f(U)C V. Thus, f! (@PY) C @/H(P)f‘l (V). If
f is surjective, f(U) =V, which implies f~! (@PB) =
f*l <P>f71 (B)'

On the contrary, assume that f is not surjective; then f (U) C

apr

V. According to the above proof, we have f~! (@ » B) C
@fﬂp)f‘l (B), which is a contradiction. Similar to the
above proof, we have the same result for ¥-lower approximation

operator. We complete the proof.
6) Similar to the proof of (5). 0O

IV. HOMOMORPHISM BETWEEN INFORMATION SYSTEMS WITH
Fuzzy RELATIONS

In this section, based on the results of the previous sections,
we introduce the notions of homomorphism to study the com-
munication between information systems with fuzzy relations,
and investigate some properties of this type of information sys-
tems under the condition of homomorphism. However, the idea
of homomorphism in this section has no closed link with the
ones in standard algebra such as group theory or ring theory.
Homomorphism employs the same idea to set up relationship
between two sets. We first introduce the notions of fuzzy relation
information systems.

Definition 4.1: Let U and V be finite universes, f :
U — V a mapping from Uto V, and R = {R;, Ry,..., R, }

a family of fuzzy binary relations on U; let f(R)=
{f(Ry),f(R2),...,f(Ry)} Then,thepair (U, R)isreferred
to as a fuzzy relation information system, and the pair (V, f(R))
is referred to as a f—induced fuzzy relation information system
of (U,R).

Definition 4.2: Let U and V be finite universes, f: U —
V a mapping from U to V, and P ={P,Ps,...,P,}
a family of fuzzy binary relations on V. Let f~! (P)=
{f1 ), f 1 (P),....,f " (P,)}. Then, the pair (V,P) is
referred to as a fuzzy relation information system, and the pair
(U, f~ (P)) is referred to as a f-induced fuzzy relation infor-
mation system of (V, P).

Definition 4.3: Let (U,R) be a fuzzy relation information
system and (V, f(R)) a f-induced fuzzy relation information
system of (U,R), R; € R,i < n. f is referred to as a homo-
morphism from (U, R) to (V, f(R)) if f satisfies the following
conditions:

D (O R) =y F(R).

2) f(NiZ Ro) =Ny f(R )

Definition 4.4: Let (U, f~' (P)) be a f-induced fuzzy re]a—
tion information system of (V, P) If f is surjective, then f~!
referred to as a homomorphism from (V, P) to (U, f~* (P))

Theorem4.5: Let (U, R) be a fuzzy relation information sys-
tem and (V, f(R)) a f-induced fuzzy relation information sys-
temof (U, R).IfVR;, R; € R, fis consistent with respect to R;
and R;, then f is a homomorphism from (U, R) to (V, f(R)).

Proof: It follows immediately from Corollary 3.7 and
Definition 4.3.

By Proposition 3.4 and Theorem 4.5, we get the following
corollary.

Corollary 4.6: Let (U,R) be a fuzzy relation information
system and (V, f(R)) a f-induced fuzzy relation information
system of (U, R). If VR; € R, fis compatible with respect to
R;, then f is a homomorphism from (U, R) to (V, f(R)).

In order to identify homomorphism satisfying different con-
ditions, we make the following appointments.

1) IfVR;, R; € R, f is consistent (respectively, strictly con-
sistent) with respect to ; and R;, we call f a consistent
(respectively, strictly consistent) homomorphism.

2) A homomorphism satisfying the condition that f is com-
patible with respect to each fuzzy relation R; € R is called
compatible.

Remark 5: After introducing the notions of homomorphism,
all the theorems and corollaries in which the equality “="
holds in the above sections may be viewed as the properties of
homomorphism.

The following theorems and corollaries reveal the nature of a
homomorphism from (U, R) to (V, f(R)).

Theorem 4.7: Let (U, R) be a fuzzy relation information sys-
tem, (V, f(R)) a f-induced fuzzy relation information system
of (U,R), and f a compatible homomorphism from (U, R) to
(V, f(R)). Then, VR; € R, where

1) R; isreflexive if and only if f (R;) is reflexive;

2) R; is symmetric if and only if f (R;) is symmetric;

3) R; is transitive if and only if f (R;) is transitive;

4) the numbers of binary relations in R and f(R) are equal
to each other, that is, f is one-to-one with respect to R;;



5) if f is surjective (not bijective), then the number of objects
in Vis less thanin U, i.e., f is not one-to-one with respect
tox eU.

Proof: Since f is a compatible homomorphism from (U, R) to
(V. f(R)), weknow that VR, € R, f is compatible with respect
to R7

(1) If R; is reflexive, by Theorem 3.5, f (R;) is also reflexive.
Letting R; be notreflexive, and assuming that f (R;) isreflexive,
by Theorem 3.5 and Theorem 3.10 (2), we know that R; is
reflexive. This is a contradiction. Therefore, f (R;) is also not
reflexive.

(2) and (3) are similar to the proof of (1).

(4) Let Ry # Ry. Assume that f(R;) = f(Ry). Then,
Y (f(R1)) = f 1 (f(Ry)). According to Theorem 3.10 (2),
FY(f(R)) =Ry and f(f(Ry)) = Ry. It follows that
Ry = R». This is a contradiction.

(5) Straightforward. a

Remark 6: From (1)—(3) of this theorem, we can see that
the reflexivity, symmetry, and transitivity of a fuzzy relation
are kept in the communication between two information sys-
tems under a compatible homomorphism f. By (4) and (5) of
this theorem, we know that a compatible homomorphism f
on information systems is a useful tool to aggregate sets of
objects. It should be pointed out that a strictly consistent ho-
momorphism also has the same properties as (4) and (5) listed
above.

Remark 7: Parallel to Theorem 4.7, there are similar proper-
ties for a homomorphism from (V, P) to (U, f~! (P)).

Definition 4.8: Let (U,R) be a fuzzy relation information
system, R C R and S C R. R is said to be superfluous in R if
NR = N (R — {R}); otherwise, it is indispensable. The subset
S is referred to as a reduct of R if S satisfies the following
conditions:

1) NS =nNR;

2) VR, € S,NS C ﬂ(S - {Rz})

Let Re d(R) be the collection of all reducts of R, and let
Core(R) = NRe d(R), similar to the counterpart in Pawlak’s
rough sets, C'ore(R) is the collection of all indispensable ele-
ments in R and is called the core of R.

Theorems 4.9 and 4.10 show that under the condition of a
strictly consistent homomorphism, or a compatible homomor-
phism f, the image of reduct of the original system is also a
reduct of image system.

Theorem 4.9: Let (U, R) be a fuzzy relation information sys-
tem, (V, f(R)) a f-induced fuzzy relation information system
of (U,R), f a strictly consistent homomorphism from (U, R)
to (V, f(R)) and S C R. Then, S is a reduct of R if and only
if f(S) is areduct of f(R).

Proof: = Since S is a reduct of R, we have NS = NR.
Hence f(NS)= f(NR). Since f is a consistent homo-
morphism from (U,R) to (V,f(R)), by Definition 4.3
and Corollary 3.7 (2), we have Nf(S)=nNf(R). As-
sume that IR; € S such that N(f(S) — f(R;)) =Nf(S).
Because of f(S)—f(R;))=f(S—{R;}), we have
N(f(8) = f(R)) =nf(S—{Ri}) =nf(S) =nf(R).
Similarly, by Definition 4.3 and Corollary 4.7(2), it follows that
f(N(S—R;))=f(NR). Again, since S is a reduct of R,
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we have NS # N (S — {R;}). Thus, there must be x¢,yy € U
such  that NS (zg,y0) <N(S—{R;}) (x0,y0), which
implies

F(O(S = {R:i}) (f (z0) , f (w0))

= sup sup N(S —{R;}) (u,v)

wef~t(f(zo)) vef~ (f(yo))

> sup sup
uwef 1 (f(xo)) vef M (f(yo))

= f(0S) (f (o), f (w0))
= f(NR) (f (z0) , f (v0))

by the fact that f is a strictly consistent homomorphism. This is
a contradiction.

< Let f(S) be a reduct of f(R); then, Nf (S) =nNf(R).
Since f is a consistent homomorphism from (U,R) to
(V, f(R)), by Definition 4.3 and Corollary 3.7(2), we have
f(NS) = f(NR). Assume that NS D NR, there must exist
x0,yo € U suchthat "R (xg,y0) < NS (z0, yo)- By the strictly
consistence of homomorphism, we have

F(08) (f (o), f (wo)) =

NS (u,v)

sup sup NS (u,v)

uef=(f(zo)) vef~ (f(yo))

> sup sup
uef 1 (f(wo)) vef 1 (f(yo))

= (NR) (f (z0), f (%)) -

This is a contradiction. Thus, NS = NR.. Assume that 3R; €
S such that N (S —{R;}) =NR; then, f(N(S—Ry)) =
f(NR). Again, by Definition 4.3 and Corollary 3.7(2), we
have N/ (S — {R;}) = Nf(R). Hence, N (f () — f (R:)) =
Nf(R). This is a contradiction to the fact that f (S) is a reduct
of f(R). This completes the proof of this theorem. O

Theorem 4.10: Let (U,R) be a fuzzy relation information
system, (V, f(R)) a f-induced fuzzy relation information sys-
tem of (U,R), f a compatible homomorphism from (U, R) to
(V, f(R)) and S C R. Then, S is a reduct of R if and only if
f(S) is areduct of f(R).

Proof: It follows immediately from Definitions 4.3 and Corol-
laries 3.8, 3.11(2).

By Theorems 4.9 and 4.10, we immediately get the following
corollary.

Corollary 4.11: Let (V, f(R)) be a f-induced fuzzy relation
information system of (U,R),R€ R, and SCR.If fisa
strictly consistent homomorphism, or a compatible homomor-
phism from (U, R) to (V, f(R)), then we have following.

1) Ris indispensable in R if and only if f (R) is indispens-

able inf(R).

2) Sis superfluous in R if and only if f (S) is superfluous in
/(R).

3) The image of the core of R, is the core of the image of R,
and the inverse image of the core of f(R) is the core of
the original image. That is, Core(R) is the core of R if
and only if Core (f(R)) is the core of f(R).

Remark 8: 1f f is just a general homomorphism from (U, R)

to (V, f(R)), it can only keep the statement that S is a reduct

MR (u,v)
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TABLE VII
RELATION f(R3y)
T-7 Y Y2
Vi 0.8 0.7
Vo 0.9 0.7
TABLE VIII
RELATION f(R1) N (R2)
T-8 V1 Y2
¥ 0.6 0.7
V2 0.6 0.7
TABLE IX
RELATION R4

T-1 | x1 x2 x3 x4 x5 x6 x7
x1 07 (04 |07 (05 |07 |04 |07
x2 07 {03 |05 (08 |05 |03 |07
x3 06 (04 |02 (05 (02 |04 |06
x4 06 ({03 |05 (0.8 [05 |03 |06
x5 06 (04 |02 (05 (02 |04 |06
x6 07 {03 |05 (08 |05 |03 |07
x7 0.7 104 (07 |05 |07 (04 |07

of R = f(S) is areduct of f(R) true. It cannot guarantee that
the converse statement is true.

Parallel to Theorem 4.10, there is a similar theorem for a
homomorphism from (V, P) to (U, f ' (P)).

Theorem 4.12: Let (V,P) be a relation information sys-
tem, (U, f~! (P)) a f-induced relation information system of
(V,P), f~" ahomomorphism from (V, P) to (U, f~! (P)) and
Q C P. Then, Q is a reduct of P if and only if f~! (Q) is a
reduct of f~1 (P).

Proof: Tt is similar to the proof of Theorem 4.10. O

The following example is employed to illustrate our idea in
Theorem 4.9 and 4.10.

Example 4.1: Let (U, R) be a fuzzy relation information sys-
tem, where U ={x1, 29, ..., x7}, and R={R;, Ry, R3}. Let
Ry, Ry, R3 be as described in Tables IX-XI, respectively. De-
note Ry N Ry N R3 as in Table XII.

Let V = {y1,%2, Y3, Vs }. Define a mapping f: U — V as
follows:

X1,T7 T2, L6 X3, L5 Ty
hn Y2 Ys Y4

Then, f(R)={f(Ri),f(R:),f(Ry)}, and f(Ry),
f(R2), f (Rs3) are expressed as Tables XIII-XV.

In addition, (V, f(R)) is the f-induced fuzzy relation infor-
mation system of (U, R). It is very easy to verify that f is a
compatible homomorphism from (U, R) to (V, f(R)).

We can see that f (R;) is superfluous if f(R) < Ry is su-
perfluous in R and that {f (Ry), f (R3)}, and is a reduct of
f(R) < {Ry, R3} is a reduct of R. Therefore, we can reduce
the original system by reducing the image system and reduce
the image system by reducing the original system.

Definition 4.13: Let U be a finite universe of discourse, R
a finite set of fuzzy T-similarity relations called conditional

TABLE X
RELATION Ro

T-2 | x1 x2 x3 x4 x5 X6 x7
x1 0410507 ]05]|07]|05] 04
x2 [ 06 | 08 |05 (08|05 08|06
x3 (071090209 (02]09 |07
x4 | 06 | 08 |05 (08| 05| 08|06
x5 107 109 |02]09]02]|09 /|07
x6 | 06 | 0.8 | 05|08 | 05| 08| 06
x7 | 0405|107 |05]07]| 05|04

TABLE XI
RELATION Rj3

T-3 | x1 x2 | x3 | x4 | x5 x6 | x7
x1 08 | 03 0.7 | 0.8 0.7 | 0.3 0.8
x2 07 |02 |06 |07 ]| 06| 02]07
x3 04 |04 | 09|04 ]| 09|04 ]| 04
x4 0.8 0.3 0.7 0.8 0.7 0.3 0.8
x5 04 |04 | 09|04 |09 |04 )| 04
x6 0.7 0.2 0.6 0.7 0.6 0.2 0.7
x7 08 | 03 0.7 | 0.8 0.7 | 0.3 0.8

TABLE XII
RELATION R; N R N R3

T4 | x1 x2 x3 x4 x5 X6 x7
x1 04 | 03 07 05|07 ] 03] 04
x2 06 | 02 | 05|07 | 05|02 06
x3 04 | 04 | 02 |04 | 02|04 | 04
x4 06 | 03 | 05|08 |05 ] 03] 0.6
x5 04 | 04 | 02 |04 |02 |04 ]| 04
X6 06 | 02 | 05|07 | 05|02 0.6
x7 04 | 03 070507 ]03] 04

TABLE XIII
RELATION f(Ry1)
T-5 yl y2 y3 Y4
yl 0.7 0.4 0.7 0.5
y2 0.7 0.3 0.5 0.8
y3 0.6 04 0.2 0.5
y4 0.6 0.3 0.5 0.8

attribute set, and D an equivalence relation called decision at-
tribute with symbolic values. Then, (U, R U D) is called a T'-
fuzzy decision system. Denote Int(R) = N{R : R € R}; then,
Int(R) is also a fuzzy T-similarity relation.

Definition 4.14: Let Uand V be finite universes, f : U — V
a mapping from U to V, and (U, R U D) a T-fuzzy decision
system. Then, the pair (V, f(R)U f (D)) is referred to as a
f-induced T-fuzzy decision system of (U,R U D).

Definition 4.15: Let (U,R U D) be a T-fuzzy decision sys-
tem, x € U, R C R, and S C R. [z]p is the equivalence class
with respect to D and the positive region of D relative to
Int(R)is defined as Posy,r)D = UyerInt(R)y ([z]p). R is
said to be superfluous with respect to D in R if Posy,(r)



TABLE XIV
RELATION f(R2)
T-6 yl y2 y3 Y4
yl 0.4 0.5 0.7 0.5
y2 0.6 0.8 0.5 0.8
y3 0.7 0.9 0.2 0.9
y4 0.6 0.8 0.5 0.8
TABLE XV
RELATION f(R3)
T-7 yl y2 y3 y4
yl 0.8 0.3 0.7 0.8
y2 0.7 0.2 0.6 0.7
y3 0.4 04 0.9 0.4
y4 0.8 0.3 0.7 0.8

D = Posyyi(r—r)D; otherwise, it is indispensable with respect
to D. S is referred to as a reduct of R if S satisfies the following
conditions.

1) POSIM(R)D = POS[nt(s>D.

2) VR; € S,POSInt(R)D D POSInt(S-{R;})D'

The collection of all indispensable elements with respect to
D in R is called the core of R with respect to D, which is
denoted as Corep (R).

Theorem 4.16: Let (U,RU D) be a T-fuzzy decision sys-
tem, (V,f(R)U f(D)) a f-induced T-fuzzy decision sys-
tem, and fa compatible homomorphism from (U, R U D) to
(V,f(R)U f(D)),and S C R. Then, S is areduct of R if and
only if f (S) is a reduct of f(R).

Proof: = Since

w[ﬂc]p (y) = Int(R)y [z]p (v)

=U {Int(R)TZA (y) : Int(R)7 2 C [w]D}
we have

£ (Imt(R), [2],

=U {f (Int(R)TzO :Int(R)rz; C [x]D}

= U {TtR)), £ (2), : Ie(R)r2 € [o], |
by (1) of Theorem 3.12. Since f is a compatible homomor-

phism from (U,RU D) to (V, f(R)U f (D)), by Definition

4.3 and Theorem 3.12, it follows that Int(R)y 2, C [z], <
f (Int(R)Tz,\) C f([=]p). This implies

7 (mt(R), [+],,)

= U{T MRS (=), : £ (WtR)r2) € £ ([a]p) }

= Ut (7R, / (2), : Tt (TR (), € £ ([alp) }
=t (f(R)) f (2],

V)

=Int (f(R)), f ([z]p)
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— Wﬁ Lf (x)]f(D)

by (1) of Theorem
Uzer Int(R)y ([2]p ), we have

3.12.  Since  Pospr)D =

f (Postucy D) = f (User Tt (R)o ([2]n))

=User f (w([xbv
= U.T,EUW?V [f (z)]f(D) '

Similar to the above reasoning, we have
f (Postus) D) = f (Urev Int(S) (a]p) )

= Usev f (t(8)a ([e]n))
= UzerInt (f (), [f (@)]5(p)

for SCR. Since S is a reduct of R, it follows that
Pospyr) D = Posyg(s) D, which implies f (Poshlt(R)D) =
f (Posine(syD). Hence, Pospy(r(r)))Sf (D) = Posi(s(s))
f(D).

Assume that there is a fuzzy T-similarity relation R; such
that POSInt(f(S))f (D) = POSInt(f(S-{R, }))f (D), then, we have
Pospi(f(r)) f (D) = Posm(ss—{r. ) f (D), i.e.,

Urev Int (f(R)), [f ()] (p)
= UrevrInt (f (S—R)), [f (=)]4(p) -

Since  [f (2)];p) N If W)pp) =@ and [f(2)];p) #
Wy we  have It (f(R)) [f(2)l;p) =
Int (f (S—Ri)), [f ()];p) for every xe€U. Since f
is a compatible homomorphism from (U, RUD) to
(V,f(R)U f (D)), similar to the above proof, we have

f (Int(R)g [I]D) = f (Int(SfRi,)g [x]D), which implies
that Int(R)y [7], = Int(S—R;)y [z],. Hence, Pospr)D
= Posyy¢(s—{r,}) D, which is a contradiction to the fact that S
is a reduct of R.
<= Similar to the above proof, and we can get the conclusion.
Corollary 4.17: Let (V,f(R)U f (D)) be a f-induced
fuzzy relation information system of (U,RU D), R € R, and
S CR. If f is a compatible homomorphism from (U, R) to
(V, f(R)). Then we have the following.
1) R is indispensable with respect to D in R if and only if
f (R) is indispensable inf (R) with respect to f (D).

2) Sis superfluous with respect to D in R if and only if f (S)
is superfluous in f(R) with respect to f (D).

3) The image of the relative core of R is the relative core
of the image of R and the inverse image of the rela-
tive core of f(R) is the relative core of the original im-
age. That is, Corep (R) is the core of R if and only if
Corey(py (f(R)) is the core of f(R).

Remark 9: If f is just a general homomorphism from (U, R)
to (V, f(R)), it can only keep the statement that S is a relative
reduct of R = f(S) if a relative reduct of f(R) is true. It
cannot guarantee that the converse statement is true.
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V. CONCLUSION

In this paper, we have study the communication between in-
formation systems with fuzzy relations. We point out that a map-
ping between two universes can induce a fuzzy binary relation of
one universe according to the given fuzzy relation on the other
universe. For an information system with fuzzy relations, we
can consider it as a combination of some fuzzy approximation
spaces on the same universe. The mapping between fuzzy ap-
proximation spaces can be explained as a mapping between the
given fuzzy relation information systems. Based on these obser-
vations, we have explored properties of fuzzy relation mappings
and discussed the characteristics of fuzzy relation information
systems and found that attribute reductions of the original sys-
tem and its image system are equivalent to each other under
homomorphism.

These results illustrate that some characteristics of a fuzzy
relation information system are guaranteed in its image system,
which may have potential applications in knowledge reduction,
decision making, and reasoning about data, especially for the
case of two information systems. These results will also help in
forming a systematic and theoretic framework for information-
granule communication analysis. However, some results in this
paper are right only under some sufficient conditions. How to
explore the sufficient and necessary conditions of these results
is our future work.
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