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Feature selection is an important preprocessing step in machine learning and pattern recognition. It is
also a data mining task in some real-world applications. Feature quality evaluation is a key issue when
designing an algorithm for feature selection. The classification margin has been used widely to evaluate
feature quality in recent years. In this study, we introduce a robust loss function, called Brownboost loss,
which computes the feature quality and selects the optimal feature subsets to enhance robustness. We
compute the classification loss in a feature space with hypothesis-margin and minimize the loss by opti-
mizing the weights of features. An algorithm is developed based on gradient descent using L2-norm reg-
ularization techniques. The proposed algorithm is tested using UCI datasets and gene expression datasets,
respectively. The experimental results show that the proposed algorithm is effective in improving the
classification robustness.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The availability of information is increasing explosively, so the
problem of focusing machine learning algorithms on the key infor-
mation is becoming more and more important. Attribute reduction
and feature selection are considered to be effective approaches for
overcoming the problem of information overload. In general, attri-
bute reduction aims to find a mapping from a high-dimensional
space to a lower-dimensional space, while feature selection tries
to pick a subset of features from the raw data. Feature selection
has two advantages: it retains the original semantics of the se-
lected features, which are useful for understanding the data, and
it improves the modeling performance [1,2]. In recent years, fea-
ture selection techniques have been applied to gene data analysis
[3,4], medical image processing [5], predictive analysis [6], and
other applications.

It is well known that feature evaluation is a crucial aspect of the
design of feature selection algorithms. The strategies used for fea-
ture evaluation are divided into two categories. The first category
evaluates the candidate features directly based on their classifica-
tion accuracy. However, these techniques are generally computa-
tionally expensive [1]. The second category evaluates the quality
of different features using independent functions, including margin
[7,8], consistency [9,10], mutual information [11–13], correlation
[14,15], and dependency [16,17].
Margin is a representative independent function, which has be-
come a hot research topic in recent years. Margin was first intro-
duced by Vapnik for training support vector machines (SVM),
where it maximizes the classification margin between different
classes [18]. In 1999, Shawe Taylor and Cristianini stated the upper
bound of the SVM generalization error and showed that the bound
is related to the sample size and classification margin [19]. In 2002,
Crammer et al. discussed the generalization error of the margin,
which was used in AdaBoost, and showed that generalization error
is independent of input dimension size, while the VC dimension
grows with an increasing number of base classifiers [20]. In
2004, Gilad Bachrach et al. developed three feature selection meth-
ods based on margin and proved the infinite sample generalization
bound for 1NN using the large margin theory [7]. In general, we de-
sire samples that produce large margins so the classification has
higher levels of confidence and reliability.

Many margin-based learning algorithms have been developed,
including margin-based feature selection [7,8,21,22], classifier
training [23,24] and ensemble learning [25–27]. All of these algo-
rithms use margin-based classification loss functions to obtain
optimal solutions. Classification loss functions decrease monoton-
ically with the margin. When the margin of a sample is larger than
zero, the sample is correctly classified and the classification loss is
small; otherwise, it is misclassified and the loss is relatively large.
There are several loss functions, including the hinge loss used in
SVM training [18], the squared loss applied in regression and fore-
casting analysis [28,29], the Exponential Loss function [30,31] ap-
plied in AdaBoost, and the logistic loss used in regression
learning and ensemble learning [32–34]. In 2001, Freund et al.
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recognized that the behavior of boosting methods is closely related
to Brownian motion in a noisy environment and designed a robust
boosting algorithm known as Brownboost, then derived the
Brownboost loss function [26].

Loss functions can be used as the optimization objectives in
classification and regression, so they can also be employed for eval-
uating and selecting features. Margin-based feature selection algo-
rithms have been discussed extensively. In general, margin-based
feature selection can be divided into three categories. The first
method category maximizes the margin for feature selection di-
rectly, such as Relief [35], Simba [7], and ReliefF [36]. Relief and
its extended algorithms compute the margin in the feature space
and use the margin as the weights of the features. Simba possesses
some improvements relative to Relief. It calculates the weight of
each feature using gradient descent and adds the samples to up-
date the weights iteratively.

The second class of algorithms minimize the margin-induced
loss functions to compute the weights of features. In 1992, Tibshira-
ni et al. proposed the least absolute shrinkage and selection opera-
tor (LASSO), which minimizes the sum of the squared residuals with
a constraint on the L1-norm of the coefficient vector [37]. Zhao et al.
showed that LASSO was an efficient method for variable selection
by jointly minimizing the empirical error and the L1 penalty [38].
Previous studies [39,40] presented feature selection methods that
obtain sparse solutions for LASSO-penalized logistic regression
and applied them to SVMs. Kim et al. stated that the optimization
problem of LASSO can be considered to be an extension of L1 boost-
ing and that both are consistent with learning theory. In addition,
Chen et al. proposed a feature selection method that used linear
programming, which was based on a maximum margin criterion,
where the hinge loss and sample distances were combined to learn
the weights of features [21]. Later, Hu et al. presented a method for
sample selection based on the margin loss and applied it to a near-
est neighbor classifier [22]. Pan et al. presented a large margin fea-
ture selection method based on Brownboost loss and L1

regularization for SVM to obtain sparse feature weightings [41].
The third class trains the weights of features using a support

vector machine. In 2002, Guyon et al. proposed a method for fea-
ture selection that utilized a support vector machine-based recur-
sive feature elimination (SVM-RFE) method and good experimental
results were obtained using gene data [42]. Recent variants or
extensions of SVM-RFE included multiclass extensions of SVM-
RFE [4], a variant of SVM-RFE that uses simulated annealing to
eliminate a number of features at a time [43], and a two-stage fea-
ture selection algorithm based on SVM-RFE [44].

Thus, many margin-based feature selection methods have been
proposed. However, the above mentioned methods quantify the
margin based on convex losses, which has a drawback when ap-
plied to classification and regression. They use a large value to
penalize large negative margins, which may make the algorithm
sensitive to noise. Brownboost loss was introduced to overcome
this drawback during boosting [26], which assigns an upper-
bounded penalty to a sample with a large negative margin. Given
that noise is widespread in real-world applications, robust meth-
ods for feature evaluation and selection are highly desirable. In this
study, we developed a feature selection method based on Brown-
boost loss and L2-norm regularization, and we compared its
robustness with some classical methods. In our experiments, the
comparative analysis showed that our proposed method was effi-
cient and robust to attribute noise and classification noise.

The remainder of this paper is organized as follows. In Section 2,
we introduce related studies that address margin-based feature
selection. In Section 3, we explain the L2-norm regularization-
based Brownboost loss function and present a method for feature
weight learning using gradient descent, which we compare with
L1-norm regularization. In Section 4, we present the experimental
analysis. Finally, we conclude this study in Section 5.
2. Related work

Several margin-based feature selection algorithms have been
developed and we introduce related algorithms.

2.1. Relief series

The Relief [35] algorithm is a feature selection method that
maximizes the hypothesis-margin directly when estimating attri-
butes. The key concept employed by the Relief algorithm is to esti-
mate the quality of attributes based on how well their values can
distinguish instances that are very similar. During each iteration,
a sample x is selected randomly and the algorithm searches for
its two nearest neighbors: one from the same class (the nearest
hit or NH) and another from a different class (the nearest miss or
NM). Next, the weight of the ith feature is updated, as follows:

wi ¼ wi þ kxi � NMðxÞik
2 � kxi � NHðxÞik

2
; ð1Þ

where kxi � NM(x)ik2 � kxi � NH(x)ik2 is the hypothesis margin of
sample x and k � k is the Euclidean distance.

However, Relief is not robust and the nearest neighbors defined
in the original feature space are unlikely to be those in the
weighted space. Thus, some improvements were developed,
including Simba [7] and ReliefF [36].

ReliefF is a more robust algorithm for feature selection and it
can deal with multi-class problems. Similar to Relief, ReliefF selects
a random instance x and searches for k of its nearest neighbors
from the same class, as well as k nearest neighbors from each of
the different classes. It updates w based on the average contribu-
tion of the k nearest hits and the k nearest misses for all attributes,
depending on their values for x.

Algorithm 1. ReliefF
1:
 set all weights w (0, 0, . . . , 0).

2:
 for t = 1 to N do

3:
 select a random instance x from S.

4:
 find k nearest hits Ht.

5:
 for each class C – class(x) do

6:
 from class C find k nearest misses Mt.

7:
 end for

8:
 for attribute i = 1 to M do

9:
wi  wi þ
P

C–classðxÞ
PðcÞ

1�PðclassðxÞÞ

P
8�x2Mt

kxi��xik2

k �
P
8~x2Ht

kxi�~xik2

k

10:
 end for

11:
 end for
Simba estimates the weight of each feature based on gradient
descent of the hypothesis margin with respect to the weights of
the features for multi-class problems. During each iteration, the
weights of the features are updated based on a randomly selected
sample x:

wi ¼ wi þ
@hw

h

@wi

¼ wi þ
1
2
ðxi � NMðxÞiÞ

2

kx� NMðxÞkw
� ðxi � NHðxÞiÞ

2

kx� NHðxÞkw

 !
�wi; ð2Þ



182 P. Wei et al. / Knowledge-Based Systems 54 (2013) 180–198
where hw
h is the hypothesis margin with respect to the weights of fea-

tures, hw
h ¼ 1

2 ðkx� NMðxÞkw � kx� NHðxÞkwÞ and kzkw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iw
2
i � z2

i

q
.

Algorithm 2. Simba
1:
 initialize w (1,1, . . . ,1)

2:
 for t = 1 to T do

3:
 select a random instance x form S.

4:
 calculate NM(x) and NH(x) with respect to Snx and the

weight vector w.

5:
 for i = 1 to N do� �

6:
 4i  1

2
ðxi�NMðxÞiÞ

2

kx�NMðxÞkw
� ðxi�NHðxÞiÞ

2

kx�NHðxÞkw
�wi
7:
 end for

8:
 w w +4

9:
 end for

10:
 w w2

kw2k1
where (w2)i:¼(wi)2
2.2. SVM-RFE methods

SVM-RFE [42] was developed based on SVMs for reducing the
dimensions of gene data, where this method conducts gene selec-
tion using a backward elimination procedure. SVM-RFE was ini-
tially proposed for binary problems. The squared coefficients
w2

j ðj ¼ 1; 2; . . . ; pÞ of the weight vectors w are used as feature
ranking criteria. This concept is derived from the Optimal Brain
Damage (OBD) algorithm [45].

Consider a binary classification problem with training samples
fxi; yig

n
i¼1, where xi 2 Rd and yi 2 {+1, �1}. The objective function

of a SVM is usually written as:

J ¼ 1
2
kwk2 þ C

XN

i¼1

Lðyif ðxiÞÞ; ð3Þ

where f(x) is the decision function of a SVM, which has the form of
f(x) = w � x + b, L(z) is the Hinge loss, and L(z) = max(0,1 � z), while
yif(xi) is referred to as the sample margin of xi.

If the jth feature is discarded in binary SVMs, we drop the offset
b for the sake of simplicity. The criterion J can be expanded to a
second-order Taylor series, as follows.

DJðjÞ ¼ @J
@wj
ðDwjÞ þ

@2J

@2wj

ðDwjÞ2 þHðDwjÞ3: ð4Þ

In (4), the first-order term can be neglected, which becomes
DJ(j) � (Dwj)2. If we denote the value of J by J(j) after the jth feature
is removed, it follows that:

JðjÞ � J þw2
j : ð5Þ

Therefore, removing the feature with the smallest w2
j will lead to

the lowest rise in J, which also increases the generalization
performance.

In 2006, Zhou et al. presented the multi-class SVM-RFE (MSVM-
RFE) algorithm [4], which is based on multiple binary SVMs and
’all-together’ methods. This method starts with all of the features
and removes one or a few features at each iteration. In addition,
the coefficients of the weight vectors of linear SVMs are used to
rank the features, before removing the features with the smallest
score ci ¼

P
rw

2
ri, where wi represents the corresponding ith feature

in the weight vector and r is the class number.
Algorithm 3. Multi-class SVM-RFE (MSVM-RFE)
1:
 Initialize S for the full feature set: //S is the set of
selected features;
2:
 p = the number of features in Set S;

3:
 while p – m do

4:
 Train a multiclass SVM using the features in Set S;

5:
 wr = [wr1, wr2, . . . , wrp]T; P

6:
 Calculate the ranking criteria for set S : ci ¼ rw2

ri;

7:
 Identify the feature with the smallest ranking

criterion;

8:
 Remove the identified feature from set S;

9:
 p = the number of features in set S

10:
 end while

11:
 return feature set S;
2.3. LASSO methods
LASSO is the least absolute shrinkage and selection operator for
linear regression, which minimizes the sum of squared loss with a
constraint on the L1-norm of the coefficient vector [37]. Thus, LAS-
SO is a computationally feasible method for variable selection and
sparse learning. LASSO estimators solve the following optimization
problem.

min
a1;...;am

1
2

X
i

yi �
Xm

j¼1

aixij

 !2

; s:t:
XN

j¼1

jajj 6 t; t P 0: ð6Þ

The objective function of LASSO is not smooth, so special optimiza-
tion techniques are necessary. Tibshirani et al. used the quadratic
program (QP) for least square regressions [37]. Osborne et al. pro-
posed a faster QP algorithm for LASSO [46]. In 2003, Kim and Kim
proposed a gradient descent algorithm for LASSO, which was based
on L1 boosting for large datasets [47]. They also noted that the LAS-
SO optimization problem can be transformed to minimizeP

i 1�
Pm

j¼1yT
i aixij

� �2
subject to

PN
j¼1jajj 6 t; t P 0 and by consider-

ing yT
i aixij as the margin in boosting algorithms.

Logistic regression has been discussed widely in the context of
classification and regression [39], and it has a direct probabilistic
interpretation. One of the advantages of logistic regression is that
it provides the user with explicit probabilities for classification,
apart from the class label information. Moreover, it can be readily
extended to the multi-category classification problem.

Logistic regression can be formulated as the following optimiza-
tion problem based on the LASSO penalty:

min
b

q ¼
X

i

gð�yif ðxiÞÞ; s; t
Xn

j¼0

jbjj 6 t: ð7Þ

where t P 0 is the tuned parameter, f(x) is a linear model
f ðxiÞ ¼

Pn
j¼0bjxij

� �
, and the function g is given by:

gðcÞ ¼ logð1þ expðcÞÞ; ð8Þ

which is the negative log-likelihood function associated with the
probabilistic model. This is usually referred to as the logistic loss
in machine learning and yif(xi) is known as the sample margin of xi.

Shevade et al. noted that the above problem is equivalent to the
following unconstrained optimization problem using optimality
conditions [39] and proposed an algorithm based on the Gauss–
Seidel method for gene selection. Later, Liu et al. formulated the
problem as the L1-ball constrained smooth convex optimization
and proposed the solution of the problem using Nesterovs method
[40].
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Thus, various loss functions have been used to search for the
optimal classification functions during machine learning. We
now summarize some of these loss functions.

The first is the squared loss l(h) = (1 � h)2, which is used for least
squares regression. The second is the logistic loss l(h) = log
(1 + exp(�h)), which is used widely in regression analysis. The third
is the hinge loss l(h) = max(0,1 � h), which is used in SVMs. In
addition, the Exponential Loss l(h) = exp (�h) is used in the
Adaboost algorithm.

Some of these margin-based loss functions are not sufficiently
robust to deal with noisy data, such as squared and Exponential
Loss functions. Noise is widespread in real-world applications, so
robust loss functions and algorithms are highly desirable.

3. Robust loss function and feature weight learning

3.1. Robust loss function

In this section, we introduce a robust loss function referred to as
Brownboost loss, which is based on the boost-by-majority algo-
rithm (BBM) and the infinite horizon concept [26].

Next, we describe the details of the Brownboost loss function. In
our setup, the time variable range was 0 6 t 6 1 and we denote the
margin by h, so we define the potential function as:

/ðh; tÞ ¼ 1
2

1� erf
h� aðtÞ

bðtÞ

� �� �
;

where erfðaÞ ¼ 2
p

Z a

0
expð�x2Þdx;

ð9Þ

erf is the error function, and a(t) and b(t) are defined by the
equations

aðtÞ ¼ ðg� 2qÞ expð1� tÞ þ 2q; ð10Þ

bðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2

0 þ 1Þ expð2ð1� tÞÞ � 1
q

; ð11Þ

where g > 0; b2
0 P 0 and q > 0 are the parameters of the algorithm.

In Eqs. (10) and (11), a(t) and b(t) do not depend on margin h, so
we can view them as positive integers and obtain the following
equation:

LossBrownboostðhÞ ¼
1
2
f1� erfðphþ qÞg;

where erfðaÞ ¼ 2
p

Z a

0
expð�x2Þdx;

ð12Þ

where p ¼ 1
bðtÞ and q ¼ �aðtÞ

bðtÞ .
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Fig. 1. Comparison of the classification loss.
The existing margin loss is the upper boundary on the general-
ization error of a zero-one loss. As shown in Fig. 1, the margin loss
is a monotonic function that decreases with the margin. When the
margin of a sample is more than zero, the sample will be classified
correctly and the margin loss is a small value, otherwise it will be
misclassified and the margin loss received a larger penalty value.

Clearly, the total loss will be large if most of the instances have
negative margins. However, the Exponential Loss, hinge loss, and
squared loss output are larger than the Brownboost loss if the in-
stance has a large negative margin. In general, the Brownboost loss
rejects instances that are located deep on the incorrect side of the
boundary, which are unlikely to be classified correctly at the end.
Thus, this method is expected to be more robust than the other
functions. The Brownboost loss assigns the same value to penalize
negative margins if they are far from the boundary.

3.2. Feature weight learning for the robust loss function

The margin-based Brownboost loss function allows us to mini-
mize the loss of the hypothesis margin using feature weight
learning.

To obtain the margin loss of a dataset, we provide the following
definition.

Definition 1. Given a set of samples S = {x1,x2, . . . ,xn}, we define
the loss function as
LðSÞ ¼ 1
n

X
xi2S

l hw
h ðxÞ

	 
	 

; ð13Þ

where L(S) is the average loss of S, l hw
h ðxÞ

	 

is the hypothesis margin

of sample x with its weighted distance, and hw
h ðxÞ is the hypothesis

margin in terms of the distance.

Next, we present the objective function of the Brownboost loss
for the sample set.

wðwÞ ¼ 1
n

X
xi2S

1
2

1� 2
p

Z phw
h ðxÞþq

0
expð�x2Þdx

( )
ð14Þ

In Eq. (14), we can see that the Brownboost loss is a non-convex
function. The gradient descent method is the most efficient means
of solving it, but sometimes it fails to find the best solution [37].
A popular and successful approach for statistical learning is the
use of regularization penalties in the optimization function [38].
By jointly minimizing the loss function and penalty, we can search
for a good and simple solution, which avoids large variations. L1 and
L2 regularization are used widely at present. L1 regularization penal-
izes the weight vector for its L1-norm, whereas L2 regularization
uses its L2-norm. In general, L1 regularization has a significant
advantage for sparse representation, but L2 regularization may be
more robust to outliers than L1 regularization and it is more effi-
cient [48]. In our proposed optimization function, we tested the
use of a L2 regularization penalty for robust feature weight learning
and compared it with L1 regularization.

First, we give the optimization function based on the L2 regular-
ization penalty.

/L2
ðwÞ ¼ 1

n

X
xi2S

1
2

1� 2
p

Z phw
h ðxÞþq

0
expð�x2Þdx

( )
þ kkwk2

s:t: wi P 0;
where k > 0; k is a tune parameter:

ð15Þ

This function can be differentiated to yield a feature weight vec-
tor, so we can use the gradient descent method to minimize /L2

ðwÞ.
The gradient of /L2

ðwÞ is evaluated as



Table 1
Datasets.

Number Data Samples Features Classes

1 Breast 84 9216 5
2 Crx 690 15 2
3 DLBCL 88 4026 6
4 German 1000 24 2
5 Iono 351 34 2
6 Leukemial 72 7129 3
7 Sick 2800 29 2
8 Sonar 208 60 2
9 Soybean 683 35 19

10 Spam 4601 57 2
11 SRBCT 88 2308 5
12 Wdbc 569 30 2
13 Wine 178 13 3
14 Zoo 101 16 7
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ðr/L2
ðwÞÞ

i
¼ @/ðwÞ

@w
¼ @w
@hw

h

� @h
w
h

@w
þ krðkwk2Þw

¼ p
2np

X
x2S

exp �ðphw
h þ qÞ2

n o
�rðhw

h Þ þ k
wi

kwk2

where r hw
h

	 

¼ wi �

xi � NHðxiÞ
kx� NHðxÞkw

� xi � NMðxiÞ
kx� NMðxÞkw

� �
ð16Þ

Next, we give the optimization function based on the L1 regular-
ization penalty.

/L1
ðwÞ ¼ 1

n

X
xi2S

1
2

1� 2
p

Z phw
h ðxÞþq

0
expð�x2Þdx

( )
þ tkwk1

s:t: wi P 0

where t > 0; t is a regularization factor:

ð17Þ

In Eq. (17), when the weight is zero, kwk1 is not smooth so L1

regularization is considered to be a difficult problem [39,40,58].
Many researchers have proposed effective methods to address this
problem, such as Gauss–Seidel [39], Grafting [49], Shooting [50],
and Stochastic Gradient Descent (SGD) [51]. A previous study
[41] used the SGD method to address this problem and obtained
good results. This approach was based on the iterative shrinkage
thresholding (IST) technique [52] where the smooth objective
Table 2
1NN Performance comparison of classical methods using the raw datasets (%).

DataSet InfoGain Consistency

Breast 98.8 ± 4.0(60) 87.5 ± 8.3(4)
Crx 80.6 ± 12.9(6) 79.7 ± 13.5(12)
DLBCL 97.3 ± 5.8(55) 84.0 ± 12.1(4)
German 70.6 ± 1.5(2) 66.0 ± 3.4(15)
Iono 91.2 ± 5.4(7) 88.4 ± 5.6(7)
Leukemial 97.2 ± 5.7(24) 81.1 ± 12.5(4)
Sick 97.3 ± 1.1(6) 96.6 ± 1.3(9)
Sonar 87.5 ± 7.3(44) 82.2 ± 5.1(14)
Soybean 93.6 ± 4.1(28) 88.0 ± 4.4(14)
Spam 89.7 ± 3.0(33) 87.0 ± 3.1(25)
SRBCT 81.9 ± 17.9(223) 71.3 ± 12.8(6)
Wdbc 96.0 ± 2.9(20) 94.2 ± 3.7(7)
Wine 97.6 ± 4.3(8) 95.5 ± 4.4(5)
Zoo 95.4 ± 8.4(11) 92.1 ± 9.4(5)

Ave. 91.1(37.6) 85.3(9.4)
function in Eq. (14) converges to a minimum if the selected thresh-
old t is sufficiently large. The weight updating process is divided
into two steps. First, the weight is updated without considering
the L1 penalty term and we can obtain �wi. Next, the L1 penalty is
applied to the weight so it does not change the sign value. In other
words, the weight is removed when it crosses zero. The weight
updating procedure is as follows.
�wkþ1
i ¼ wk

i þ tqi
@wðwÞ
@wi

where
@wðwÞ
@wi

¼ p
2np

X
x2S

exp � phw
h þ q

	 
2
n o

�rðhw
h Þ; ð18Þ

r hw
h

	 

¼ wi �

xi � NHðxiÞ
kx� NHðxÞkw

� xi � NMðxiÞ
kx� NMðxÞkw

� �

wkþ1 ¼
max 0; �wkþ1

i � tqi

	 

if �wkþ1

i > 0;

min 0; �wkþ1
i þ tqi

	 

if �wkþ1

i < 0;

8<
: ð19Þ

In Eqs. (18) and (19), t > 0,t is a regularization factor and the
weights of the features become smooth if t is large, while q is the
learning factor and k is the kth iteration.
3.3. Algorithms

Next, we compare two algorithms that minimize the regular-
ized Brownboost loss functions and discuss their computational
complexity. One is our proposed method based on L2 regularization
and the other is based on L1 regularization, as described previously
[41]. Both of these methods can cope with multi-class tasks.

In FWL-L2 (Algorithm 4), we use the gradient descent method
to solve the problem defined in (15). In Algorithm 4, we set c0 as
a small constant, MaxIterNum is the number of iterations, and .
is the learning factor that determines how the parameters change
during each iteration of the gradient descent method. In the inner
loop from Step 6 to Step 13, we first compute the hypothesis
margin of sample x, which is taken as the objective function in
(16), before we use 5ð/L2

ðwÞÞ
i

to respond to the change in the
direction of the ith feature and update the weight of the ith fea-
ture. Finally, if the ith feature of sample x is less than zero, we set
it as zero. When the stop condition (kMwk < e,e) of 0.005 is
Simba ReliefF MSVM-RFE

98.8 ± 4.0(62) 97.1 ± 6.8(205) 100 ± 0.0(10)
79.6 ± 11.4(9) 79.6 ± 11.4(9) 81.9 ± 8.3(10)
100 ± 0.0(191) 98.3 ± 5.4(76) 100 ± 0.0(12)
71.2 ± 2.8(10) 70.0 ± 1.2(1) 70.1 ± 3.7(8)
90.7 ± 5.2(18) 91.8 ± 6.5(7) 92.4 ± 3.7(8)
98.6 ± 4.5(158) 97.3 ± 5.7(22) 100 ± 0.0(16)
96.6 ± 1.4(11) 97.3 ± 0.9(11) 97.2 ± 1.4(7)
87.6 ± 6.8(24) 88.5 ± 6.8(15) 88.9 ± 4.7(51)
91.1 ± 4.6(35) 92.7 ± 4.1(32) 94.5 ± 4.3(22)
88.6 ± 3.9(57) 88.6 ± 3.9(57) 90.8 ± 2.4(18)
88.8 ± 13.9(187) 84.7 ± 17.6(56) 91.4 ± 10.9(38)
96.8 ± 2.5(25) 96.3 ± 2.5(10) 96.1 ± 2.7(5)
98.3 ± 2.7(7) 96.5 ± 5.0(11) 97.6 ± 4.3(7)
95.4 ± 8.4(15) 95.4 ± 8.4(15) 95.4 ± 8.4(10)

91.6(57.8) 91.0(37.6) 92.6(15.9)



Table 3
1NN Performance comparison of margin-based techniques using the raw datasets (%).

DataSet Logistic-LASSO LASSO Exponential Loss BBL (FWL-L2) BBL (FWL-L1)

Breast 93.8 ± 10.6(30) 89.2 ± 12.9(103) 99.2 ± 2.6(93) 100 ± 0.0(106) 98.8 ± 4.0(76)
Crx 79.6 ± 13.7(13) 78.8 ± 11.6(13) 78.7 ± 11.2(15) 84.0 ± 9.7(10) 76.6 ± 13.8(7)
DLBCL 98.0 ± 4.2(199) 96.1 ± 5.2(65) 100 ± 0.0(255) 100 ± 0.0(52) 98.3 ± 5.3(55)
German 70.6 ± 3.3(2) 70.0 ± 3.6(1) 70.0 ± 1.2(1) 72.6 ± 3.3(17) 70.2 ± 1.3(5)
Iono 91.8 ± 5.1(8) 86.4 ± 6.8(7) 91.0 ± 4.0(16) 92.6 ± 3.4(14) 91.8 ± 5.7(12)
Leukemial 97.3 ± 5.7(8) 95.9 ± 6.6(36) 100 ± 0.0(158) 100 ± 0.0(49) 98.8 ± 4.0(41)
Sick 96.3 ± 0.9(23) 95.6 ± 0.7(22) 96.2 ± 1.1(24) 97.5 ± 0.8(9) 97.1 ± 1.4(4)
Sonar 87.1 ± 7.6(60) 87.1 ± 7.6(60) 87.5 ± 4.5(26) 91.4 ± 7.7(33) 88.9 ± 6.4(31)
Soybean 91.2 ± 4.4(26) 91.1 ± 4.6(34) 93.7 ± 4.3(31) 95.0 ± 3.4(19) 94.8 ± 3.8(15)
Spam 88.6 ± 3.8(52) 88.6 ± 3.8(57) 88.6 ± 3.6(36) 89.2 ± 2.1(34) 88.6 ± 3.9(57)
SRBCT 79.7 ± 16.8(11) 83.2 ± 20.1(14) 70.1 ± 15.7(280) 93.3 ± 9.4(108) 88.0 ± 14.9(87)
Wdbc 96.7 ± 2.9(9) 95.4 ± 2.9(29) 96.8 ± 2.6(24) 97.2 ± 1.9(11) 96.5 ± 3.2(15)
Wine 96.6 ± 3.1(7) 94.9 ± 5.1(13) 98.3 ± 2.8(7) 98.9 ± 2.3(6) 98.3 ± 3.7(7)
Zoo 95.4 ± 8.4(16) 95.4 ± 8.4(16) 95.4 ± 8.3(11) 96.4 ± 8.3(8) 95.4 ± 8.4(16)

Ave. 90.2(33.1) 89.1(33.6) 90.4(69.8) 93.4(34) 91.6(30)

Table 4
SVM-RBF performance comparison of classical methods using the raw datasets (%).

DataSet InfoGain Consistency Simba ReliefF MSVM-RFE

Breast 96.3 ± 6.1(54) 77.9 ± 9.2(4) 96.7 ± 5.5(33) 91.7 ± 8.4(77) 100 ± 0.0(9)
Crx 85.5 ± 18.5(1) 84.1 ± 17.5(12) 85.5 ± 18.5(2) 85.5 ± 18.4(1) 85.6 ± 18.5(5)
DLBCL 98.0 ± 4.2(28) 81.0 ± 13.2(4) 92.6 ± 7.1(21) 95.0 ± 3.3(42) 100 ± 0.0(13)
German 75.9 ± 4(8) 74.5 ± 2.5(15) 74.6 ± 3.7(7) 76.0 ± 4.7(18) 76.1 ± 3.8(8)
Iono 95.8 ± 3.6(23) 92.6 ± 3.7(7) 95.2 ± 3.8(14) 95.7 ± 3.4(16) 94.9 ± 3.9(30)
Leukemial 97.3 ± 5.7(31) 74.5 ± 7.3(4) 97.3 ± 5.7(15) 98.6 ± 4.5(9) 100 ± 0.0(14)
Sick 93.9 ± 0.1(1) 93.9 ± 0.1(9) 93.9 ± 0.1(1) 93.9 ± 0.1(1) 94.0 ± 0.2(16)
Sonar 87.0 ± 6.8(49) 82.3 ± 7.0(14) 88.9 ± 5.7(39) 88.5 ± 6.1(55) 87.5 ± 6.9(31)
Soybean 93.6 ± 3.7(28) 90.8 ± 3.6(14) 90.4 ± 4.7(34) 93.6 ± 3.7(30) 93.9 ± 4.6(11)
Spam 92.1 ± 2.9(57) 90.0 ± 2.3(25) 92.2 ± 2.8(56) 92.1 ± 2.9(57) 92.2 ± 2.8(50)
SRBCT 82.1 ± 26.8(51) 62.5 ± 18.7(6) 87.3 ± 16.9(40) 82.5 ± 25.2(33) 94.4 ± 8.1(22)
Wdbc 98.1 ± 2.3(26) 96.5 ± 2.6(7) 98.1 ± 2.3(30) 98.1 ± 2.3(23) 98.1 ± 2.2(16)
Wine 98.9 ± 2.3(12) 97.2 ± 4.0(5) 98.9 ± 2.3(6) 98.9 ± 2.3(13) 99.4 ± 1.8(9)
Zoo 95.4 ± 8.4(12) 87.4 ± 11.4(5) 94.4 ± 8.4(15) 94.4 ± 8.4(13) 95.4 ± 8.4(6)

Ave. 92.1(27.2) 84.7(9.4) 91.9(22.4) 91.8(27.7) 93.7(17.1)

Table 5
SVM-RBF performance comparison of margin-based techniques using the raw datasets (%).

DataSet Logistic-LASSO LASSO Exponential Loss BBL (FWL-L2) BBL (FWL-L1)

Breast 93.8 ± 10.6(22) 83.1 ± 10.5(46) 96.7 ± 5.5(41) 99.2 ± 2.6(31) 100 ± 0.0(22)
Crx 85.5 ± 18.5(3) 85.2 ± 18.3(12) 85.5 ± 18.5(2) 85.5 ± 18.5(3) 85.5 ± 18.5(5)
DLBCL 98.0 ± 4.2(23) 90.0 ± 9.4(27) 93.6 ± 5.7(21) 99.0 ± 3.2(25) 97.0 ± 4.8(31)
German 76.4 ± 3.3(16) 74.0 ± 3.6(23) 73.4 ± 2.6(24) 77.0 ± 2.2(11) 74.8 ± 3.5(12)
Iono 95.2 ± 4.2(25) 94.9 ± 4.2(28) 95.2 ± 3.8(15) 96.0 ± 3.6(18) 95.2 ± 3.8(28)
Leukemial 97.3 ± 5.7(10) 94.4 ± 7.3(48) 97.5 ± 5.4(32) 100 ± 0.0(17) 97.3 ± 5.7(9)
Sick 94.0 ± 0.2(22) 93.9 ± 0.1(1) 93.9 ± 0.2(20) 94.0 ± 0.8(14) 93.9 ± 0.2(8)
Sonar 88.9 ± 7.2(50) 88.0 ± 7.9(50) 89.0 ± 6.4(35) 89.9 ± 4.7(40) 88.9 ± 7.2(43)
Soybean 91.5 ± 5.9(20) 91.7 ± 4.7(25) 94.2 ± 3.7(27) 95.0 ± 3.4(24) 94.2 ± 3.8(28)
Spam 92.2 ± 2.8(52) 92.1 ± 3.0(55) 92.2 ± 2.9(56) 92.2 ± 2.8(53) 92.1 ± 2.9(57)
SRBCT 83.3 ± 22.4(14) 85.4 ± 19.2(36) 77.6 ± 24.3(23) 88.0 ± 9.5(29) 81.0 ± 23.5(6)
Wdbc 98.1 ± 2.2(17) 98.1 ± 2.2(30) 98.1 ± 2.3(21) 98.1 ± 2.2(27) 98.1 ± 2.3(25)
Wine 98.9 ± 2.3(13) 98.9 ± 2.3(13) 99.4 ± 1.8(7) 99.4 ± 2.3(6) 98.9 ± 2.3(6)
Zoo 94.4 ± 8.4(13) 94.4 ± 8.4(12) 94.4 ± 8.3(10) 95.4 ± 8.4(7) 95.4 ± 8.4(8)

Ave. 92.0(21) 90.3(29) 91.5(23.9) 93.5(21.8) 92.3(20.6)
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satisfied, the algorithm quits the outer loop and returns the
weights of the features. In this case, we consider the weights
when the features converge.

Note that the most complex operations are to select the nearest
hit (NH) and miss (NM) because we have to compute the distances
between x and all other instances, which require H(NM) compari-
sons. The computational complexity of Algorithm 4 is H(tNM),
where N is the number of features, M is the size of the sample
set S, and t is the number of iterations. Algorithm 4 will converge
within a finite number of steps.
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Algorithm 4. Feature weight learning using gradient descent and
L2 norm Regularization (FWL-L2)
1:
 procedure
FEATUREWEIGHTLEARNINGGDL2(S,p,q,MaxIterNum)
2:
 initialize featurevectorw (1, 1, . . . , 1)T
3:
 for t = 1 to MaxIterNum do

4:
 w0 w;

5:
 "x 2 S, find NM(x) and NH(x);

6:
 for i = 1 to N do

7:
 hw

h ðxÞ  1
2 ðkx� NMðxÞkw � kx� NHðxÞkwÞ;n o
8:
 /x
L2ðwÞ  1

2 1� 2
p
R phw

h ðxÞþq
0 expð�x2Þdx þ k

M kwk2;
9:
 wi  wi � c0.
@/x

L2
ðwÞ

@wi
;

10:
 if wi < 0 then

11:
 wi 0;

12:
 end if

13:
 end for

14:
 w w

kwk1
;

15:
 Dw w � w0;

16:
 if kDwk < e then

17:
 break;

18:
 end if

19:
 end for

20:
 rank the features in descending order according to w;

21:
 return w

22:
 end procedure
In FWL-L1 (Algorithm 5), we use the SGD method to solve the
problems defined in (18) and (19). MaxIterNum is the number of
iterations and t is the regularization factor, which determines
the sparseness degree of the weights. In general, we set t as a po-
sitive constant. q is the learning factor that determines how the
parameters change during each iteration of the gradient descent
method. In this study, we set qi = q0e�i as the learning factor,
where i is proportional to the number of samples. From Step 6 to
Step 9 (see Algorithm 5), Eq. (18) is used to update the weight of
the ith feature. From Step 10 to Step 14 (see Algorithm 5), we
use the threshold t � qi to adjust the weights of the features in
(19). The computational complexity of Algorithm 5 (FWL-L1) is
H(tNM), where N is the number of features, M is the number of
samples S, and t is the number of iterations.
Algorithm 5. Feature weight learning using gradient descent and
L1-norm regularization (FWL-L1)
1:
 procedure FEATUREWEIGHTLEARNINGL1(S,p,q,t,MaxIterNum)

2:
 initialize featurevectorw (1, 1, . . . , 1)T;

3:
 for t = 1 to MaxIterNum do

4:
 "x 2 S, find NM(x),NH(x);

5:
 for i = 1 to N do

6:
 hw

h ðxÞ  1
2 ðkx� NMðxÞkw � kx� NHðxÞkwÞ;n o
7:
 wxðwÞ  1
2 1� 2

p
R phw

h ðxÞþq
0 expð�x2Þdx ;
8:
 wi  wi � t � qi
@wxðwÞ
@wi

;

9:
 �wi  wi;

10:
 if �wi P 0 then

11:
 wi  maxð0; �wi � t � qiÞ;

12:
 else if �wi < 0 then

13:
 wi  minð0; �wi þ t � qiÞ;

14:
 end if
15:
 if wi < 0 then

16:
 wi 0;

17:
 end if

18:
 end for

19:
 end for

20:
 return w

21:
 end procedure
Based on comparisons with the algorithms described in Section 2,
we found that our proposed algorithms are categories of filter mod-
els for feature selection. Filter techniques are computationally sim-
ple and fast, while they are also independent of the classification
algorithm so they can easily be scaled to very high-dimensional
datasets.
4. Experimental analysis

4.1. Data description

In the experiments, we use ten UCI datasets [53] and four gene
datasets to test the performance of the algorithms. The number of
samples in the datasets ranged from tens to thousands, while the
feature dimensions ranged from dozens to over 9000. A summary
of these datasets is provided in Table 1.

Next, we provide detailed information about the gene expression
data. Breast [54] was extracted from the database as a single table,
where each row, column, and cell represents an array element, a
hybridization, and the observed fluorescent ratio for the array ele-
ment in the appropriate hybridization, respectively. This table con-
tained 9216 rows and 84 columns. DLBCL [55] was a dataset used to
record 88 measurements related to diffuse large B-cell lymphoma.
This dataset contained 4026 array elements. Leukemial [56] was a
collection of 72 expression measurements, which contained a train-
ing set of 27 samples related to acute lymphoblastic leukemia (ALL),
11 samples related to acute myeloblastic leukemia (AML), and an
independent test set that contained 20 ALL and 14AML samples,
where each sample was analyzed using 7129 probes of 6817 human
genes. SRBCT [57] covered five different childhood tumors where
the similarities in their appearance during routine histology make
the correct clinical diagnosis extremely challenging.

4.2. Experimental methods and parameter setting

We compared our techniques with five representative algo-
rithms based on the margin, i.e., MSVM-RFE [4], ReliefF [35], Simba
[7], LASSO [37], Logistic-LASSO (Logistic loss using the LASSO pen-
alty) [40], and Exponential Loss. We also compared our methods
with InfoGain [11] and Consistency [9], which are used for feature
selection. InfoGain is a feature selection method based on informa-
tion entropy. Consistency is a feature selection technique that tries
to retain the discriminatory power of the data defined by its origi-
nal features. Our proposed method is referred to as BBL (FWL-L2)
and BBL (FWL-L1) [41].

All of the methods were implemented using MATLAB 2010b.
The implementations were run on an Intel i5 2.8 GHz CPU machine
with 4 GB of memory and a Windows 7 32-bit operating system. In
the experiment, we first learned the weights of the features using
the methods described above, before ranking the features in
descending order and adding the candidate features one by one.
After adding a new feature, we used SVM and 1NN to compute
the classification accuracy. Finally, the features with the highest
accuracy were selected.
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In our proposed method, the two parameters p and q were crit-
ical for the classification performance. Thus, we conducted exter-
nal cross-validation using a sequence of given values for p and q
(p had values from [1,5], and q was set as zero). In FWL-L2, we
set k as 0.02, but for FWL-L1, we simply selected the features with
weights greater than zero and used the cross-validation method
interval to obtain values of t in the range [0.001,0.08].

4.3. Experimental setup

The objective of our experiment was to compare the classifica-
tion accuracy, data reduction rate, and the robustness of the meth-
ods. To test the robustness of the algorithms, we consider the
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Fig. 2. 1NN classific
attribute noise and classification noise. We generated class noises
by randomly relabeling the class labels of some samples and added
the samples as noisy data in the raw data. We also generate attri-
bute noise by adding Gaussian noise to the raw data. In the exper-
iments, we add 5% and 10% noise, and generate ten datasets with
different noise levels, before computing the average classification
accuracy. We also used SVM-RBF and 1NN to compute the classifi-
cation accuracy for the raw data and the reduced data.

In the feature selection task, two main criteria were used to as-
sess the quality of feature selection methods, apart from the time
complexities of the algorithms. These were the classification accu-
racy and the number of features. In general, a feature selection
method is considered to be better if it has a fewer number of
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Fig. 2 (continued)
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features and it obtains a higher level of classification precision com-
pared with other methods. In addition, the variation in the classifi-
cation accuracy can be measured based on the quality of robustness
with different noise levels. It is very easy to know that a lower level
of variation indicates the higher robustness of the algorithm as the
noise level increases. In summary, these three criteria were used as
the corresponding measure in our experiments. In general, if a fea-
ture selection method selects a fewer number of features and ob-
tains a higher level of classification precision compared with
other methods, it also has a lower variation in its classification
accuracy so it can be considered to be a better method. Our final
goal was classification, so a method was considered to perform
badly if it had lower classification accuracy than other methods.

To describe the noise type in the experiments, C indicated the
class noise and F represented the attribute noise. To measure the
changes in the classification accuracy with different noise levels,
41 represented the difference between the raw datasets and the
5% noisy data while 42 was the difference between the results ob-
tained with the raw data and the 10% noisy data.

4.4. Results and discussion

This section presents an analysis of the experimental results.
First, we compared the performance of the feature selection meth-
ods using the raw data. The comparative results with 1NN are
shown in Tables 2 and 3. The results show that BBL (FWL-L2) per-
formed much better than the other methods in terms of the classi-
fication accuracy. It was 0.8% higher compared with the other
methods. Moreover, the improvement was as high as 8.1% com-
pared with Consistency. However, Consistency selected the least
features. MSVM-RFE selected fewer than the other methods apart
form Consistency in terms of the number of features, but Simba,
Exponential Loss and BBL (FWL-L1) selected more than the other
methods.

We compared the performance of the SVM-RBF classifiers using
the raw data. As shown in Tables 4 and 5, BBL (FWL-L2) delivered a
better performance than the other methods in terms of the classi-
fication accuracy and the number of features selected. However,
BBL (FWL-L2) and MSVM-RFE had almost the same performance,
and Consistency still had the worst performance as the SVM-RBF
classifier, but the other methods do not exist remarkable
differences.

To illustrate this problem further, we present the accuracy curves
for different algorithms where variable numbers of features were se-
lected from the raw data, which are shown in Figs. 2 and 3. The gene
expression data had high dimensionality, so we only considered the
first 300 features in the figures. The two figures show that BBL (FWL-
L2) had the highest classification accuracy and it obtained fewer
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features than the other methods, except with the gene data. MSVM-
RFE was most effective for gene data classification, while LASSO
delivered the worst performance with some datasets.

We compared the performance of 1NN in a noisy environment.
Tables 6 and 7 show the results with class noise, which demon-
strate that the classification accuracy of each algorithm declined
with the noise levels. However, the classification accuracy of BBL
(FWL-L2) declined much more slowly than that of the other meth-
ods. Using CM1 and CM2, we can see that BBL (FWL-L2) had the same
performance as ReliefF. Both of them obtain the best performance,
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Fig. 3. SVM-RBF classi
which was at least 0.7% lower than Simba, Logistic-LASSO and
MSVM-RFE. Simba, Logistic-LASSO and MSVM-RFE ranked second.
They were at best 0.8% lower than the other methods. Consistency
had the worst performance and it was 3.3% higher than BBL (FWL-
L2). Furthermore, in terms of classification accuracy and the
number of features, BBL (FWL-L2) had the highest classification
accuracy and it obtained fewer features than the other methods.
MSVM-RFE ranked second because it and BBL (FWL-L2) had the
same reduction ability but BBL (FWL-L2) was at least 1.3% higher
than MSVM-RFE in terms of the classification accuracy. Simba,
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Fig. 3 (continued)

Table 6
1NN performance comparison for classical methods with class noisy data (%).

DataSet Noise InfoGain Consistency Simba ReliefF MSVM-RFE

Breast 0% 98.8 ± 4.0(60) 87.5 ± 8.3(4) 98.8 ± 4.0(62) 97.1 ± 6.8(205) 100 ± 0.0(10)
C5% 91.3 ± 11.9(29) 83.1 ± 11.8(5) 94.1 ± 11.6(142) 96.8 ± 19.9(145) 97.5 ± 7.9(75)
C10% 90.5 ± 15.8(154) 76.1 ± 9.2(5) 90.0 ± 9.9(217) 95.8 ± 12.4(211) 96.6 ± 7.5(42)

Crx 0% 80.6 ± 12.9(6) 79.7 ± 13.5(12) 79.6 ± 11.4(9) 79.6 ± 11.4(9) 81.9 ± 8.3(10)
C5% 77.9 ± 16.4(13) 76.2 ± 15.2(11) 77.3 ± 11.9(9) 77.3 ± 11.9(9) 76.6 ± 16.5(10)
C10% 76.4 ± 18.4(7) 65.1 ± 16.8(1) 75.5 ± 19.1(11) 74.5 ± 18.2(13) 74.3 ± 19.0(13)

DLBCL 0% 97.3 ± 5.8(55) 84.0 ± 12.1(4) 100 ± 0.0(191) 98.3 ± 5.4(76) 100 ± 0.0(12)
C5% 93.4 ± 7.7(181) 80.3 ± 10.6(7) 94.4 ± 5.9(245) 95.3 ± 6.8(68) 95.6 ± 5.7(51)
C10% 89.1 ± 10.5(18) 78.2 ± 16.4(6) 92.3 ± 9.1(263) 94.6 ± 7.2(117) 94.6 ± 7.8(30)

German 0% 70.6 ± 1.5(2) 66.0 ± 3.4(15) 71.2 ± 2.8(10) 70.0 ± 1.2(1) 70.1 ± 3.7(8)
C5% 69.3 ± 5.9(11) 61.4 ± 5.9(11) 69.0 ± 1.7(2) 69.0 ± 1.7(2) 69.7 ± 3.6(9)
C10% 68.2 ± 4.4(4) 58.3 ± 5.8(9) 68.6 ± 2.8(2) 68.7 ± 2.8(1) 68.8 ± 4.8(11)

Iono 0% 91.2 ± 5.4(7) 88.4 ± 5.6(7) 90.7 ± 5.2(18) 91.8 ± 6.5(7) 92.4 ± 3.7(8)
C5% 88.1 ± 10.3(8) 84.1 ± 12.6(13) 86.7 ± 11.5(10) 87.1 ± 10.1(9) 87.8 ± 9.3(11)
C10% 82.9 ± 14.6(29) 82.1 ± 9.8(11) 83.2 ± 12.1(9) 85.5 ± 11.5(10) 84.2 ± 14.7(6)

Leukemial 0% 97.3 ± 5.7(24) 81.1 ± 12.5(4) 98.6 ± 4.5(158) 97.3 ± 5.7(22) 100 ± 0.0(16)
C5% 91.9 ± 21.1(154) 73.8 ± 20.9(5) 93.0 ± 18.1(93) 91.8 ± 17.4(49) 97.5 ± 13.7(35)
C10% 90.4 ± 17.8(15) 63.6 ± 13.4(4) 91.9 ± 21.1(142) 87.7 ± 18.2(65) 95.3 ± 18.5(144)

Sick 0% 97.3 ± 1.1(6) 96.6 ± 1.3(9) 96.6 ± 1.4(11) 97.3 ± 0.9(11) 97.2 ± 1.4(7)
C5% 95.0 ± 2.0(24) 94.4 ± 3.2(12) 95.2 ± 2.6(6) 96.0 ± 3.1(11) 95.6 ± 4.2(10)
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Table 6 (continued)

DataSet Noise InfoGain Consistency Simba ReliefF MSVM-RFE

C10% 91.9 ± 6.7(24) 91.4 ± 8.3(12) 91.9 ± 6.1(26) 92.5 ± 9.1(11) 92.6 ± 7.6(21)

Sonar 0% 87.5 ± 7.3(44) 82.2 ± 5.1(14) 87.6 ± 6.8(24) 88.5 ± 6.8(15) 88.9 ± 4.7(51)
C5% 85.4 ± 14.2(28) 79.0 ± 14.3(16) 84.9 ± 6.4(18) 87.2 ± 9.3(24) 84.5 ± 10.7(34)
C10% 84.6 ± 12.6(57) 77.9 ± 14.9(13) 83.6 ± 10.5(14) 86.4 ± 14.5(29) 81.3 ± 16.6(47)

Soybean 0% 93.6 ± 4.1(28) 88.0 ± 4.4(14) 91.1 ± 4.6(35) 92.7 ± 4.1(32) 94.5 ± 4.3(22)
C5% 89.9 ± 9.3(27) 85.9 ± 8.9(14) 87.2 ± 8.1(35) 88.6 ± 8.2(30) 90.3 ± 9.6(22)
C10% 87.7 ± 14.3(27) 83.3 ± 13.6(15) 83.9 ± 13.8(35) 85.6 ± 14.1(30) 88.5 ± 14.3(20)

Spam 0% 89.7 ± 3.0(33) 87.0 ± 3.1(25) 88.6 ± 3.9(57) 88.6 ± 3.9(57) 90.8 ± 2.4(18)
C5% 86.1 ± 9.3(57) 84.5 ± 8.7(26) 86.3 ± 8.9(50) 86.1 ± 9.4(56) 87.0 ± 8.8(23)
C10% 84.8 ± 11.3(20) 83.4 ± 11.1(25) 84.7 ± 11.7(48) 84.6 ± 12.6(50) 85.2 ± 11.5(36)

SRBCT 0% 81.9 ± 17.9(223) 71.3 ± 12.8(6) 88.8 ± 13.9(187) 84.7 ± 17.6(56) 91.4 ± 10.9(38)
C5% 78.9 ± 16.6(278) 66.8 ± 25.4(7) 85.5 ± 14.9(109) 79.5 ± 22.7(107) 87.6 ± 12.5(99)
C10% 66.2 ± 22.8(203) 56.2 ± 17.7(9) 83.5 ± 12.7(223) 74.8 ± 27.3(129) 78.4 ± 13.5(124)

Wdbc 0% 96.0 ± 2.9(20) 94.2 ± 3.7(7) 96.8 ± 2.5(25) 96.3 ± 2.5(10) 96.1 ± 2.7(5)
C5% 91.0 ± 15.1(30) 89.5 ± 14.1(10) 91.8 ± 15.4(22) 91.8 ± 13.8(8) 91.1 ± 15.1(30)
C10% 88.4 ± 24.3(19) 87.5 ± 22.9(9) 89.1 ± 25.2(9) 89.2 ± 23.5(13) 89.1 ± 21.2(14)

Wine 0% 97.6 ± 4.3(8) 95.5 ± 4.4(5) 98.3 ± 2.7(7) 96.5 ± 5.0(11) 97.6 ± 4.3(7)
C5% 90.5 ± 15.7(9) 90.5 ± 21.2(7) 91.1 ± 17.7(5) 89.5 ± 14.4(6) 91.0 ± 15.9(7)
C10% 89.5 ± 22.5(10) 85.8 ± 12.1(7) 89.9 ± 16.4(7) 89.0 ± 18.9(5) 90.5 ± 16.5(8)

Zoo 0% 95.4 ± 8.4(11) 92.1 ± 9.4(5) 95.4 ± 8.4(15) 95.4 ± 8.4(15) 95.4 ± 8.4(10)
C5% 91.1 ± 12.1(12) 90.0 ± 12.3(5) 91.1 ± 12.1(11) 91.1 ± 12.1(12) 91.1 ± 12.1(12)
C10% 86.9 ± 10.3(16) 87.9 ± 11.9(7) 88.8 ± 10.5(13) 88.8 ± 8.9(14) 89.0 ± 11.2(6)

Ave. 0% 91.1(37.6) 85.3(9.4) 91.6(57.8) 91.0(37.6) 92.6(15.9)
C5% 87.1(61.5) 81.4(10.6) 87.7(54.1) 87.7(38.3) 88.8(30.6)
C10% 84.1(43.1) 76.9(9.5) 85.5(72.8) 85.6(49.9) 86.4(37.3)

C41 3.9 3.9 3.9 3.3 3.8
4 C42 7.0 8.4 6.1 5.4 6.2

Table 7
1NN performance comparison of margin-based techniques with class noisy data (%).

DataSet Noise Logistic-LASSO LASSO Exponential Loss BBL (FWL-L2) BBL (FWL-L1)

Breast 0% 93.8 ± 10.6(30) 89.2 ± 12.9(103) 99.2 ± 2.6(93) 100 ± 0.0(106) 98.8 ± 4.0(76)
C5% 93.7 ± 8.8(40) 85.9 ± 21.7(115) 96.6 ± 8.8(106) 98.1 ± 5.9(86) 92.6 ± 15.8(46)
C10% 90.5 ± 20.5(68) 83.8 ± 15.7(94) 93.8 ± 15.8(284) 96.6 ± 7.5(107) 88.8 ± 12.4(66)

Crx 0% 79.6 ± 13.7(13) 78.8 ± 11.6(13) 78.7 ± 11.2(15) 84.0 ± 9.7(10) 76.6 ± 13.8(7)
C5% 76.5 ± 16.2(13) 76.3 ± 13.6(13) 76.2 ± 14.7(13) 78.1 ± 14.3(8) 73.8 ± 15.5(7)
C10% 74.5 ± 19.6(9) 73.4 ± 19.5(12) 73.7 ± 19.1(10) 76.6 ± 17.8(10) 71.8 ± 18.1(8)

DLBCL 0% 98.0 ± 4.2(199) 96.0 ± 5.2(65) 100 ± 0.0(255) 100 ± 0.0(52) 98.3 ± 5.3(55)
C5% 93.4 ± 7.7(127) 88.5 ± 10.4(161) 93.7 ± 11.9(283) 96.9 ± 5.1(61) 93.5 ± 5.7(46)
C10% 89.1 ± 10.5(18) 78.2 ± 16.4(6) 92.3 ± 9.1(263) 94.6 ± 7.2(62) 94.6 ± 7.8(49)

German 0% 70.6 ± 3.3(2) 70.0 ± 3.6(1) 70.0 ± 1.2(1) 72.6 ± 3.2(17) 70.2 ± 1.3(5)
C5% 69.6 ± 3.6(2) 68.9 ± 1.4(2) 69.6 ± 3.6(2) 70.7 ± 4.4(14) 68.8 ± 0.6(2)
C10% 68.9 ± 2.5(3) 67.7 ± 4.2(1) 68.4 ± 3.2(1) 70.5 ± 6.8(14) 68.3 ± 3.5(4)

Iono 0% 91.8 ± 5.1(8) 86.4 ± 6.8(7) 91.0 ± 4.0(16) 92.6 ± 3.3(14) 91.8 ± 5.7(12)
C5% 87.0 ± 8.6(11) 83.5 ± 10.4(7) 87.8 ± 12.2(6) 90.5 ± 8.9(5) 87.6 ± 7.3(7)
C10% 84.2 ± 17.7(8) 80.0 ± 12.3(32) 84.9 ± 13.3(7) 88.3 ± 12.3(15) 84.7 ± 10.6(8)

Leukemial 0% 97.3 ± 5.7(8) 95.9 ± 6.6(36) 100 ± 0.0(158) 100 ± 0.0(49) 98.8 ± 4.0(41)
C5% 93.1 ± 14.1(34) 89.3 ± 13.4(54) 94.3 ± 18.1(72) 95.6 ± 14.1(56) 91.9 ± 21.1(25)
C10% 88.9 ± 17.5(39) 81.3 ± 14.0(40) 91.9 ± 21.1(47) 94.3 ± 13.8(87) 88.1 ± 18.0(86)

Sick 0% 96.3 ± 0.9(23) 95.6 ± 0.7(22) 96.2 ± 1.1(24) 97.5 ± 0.8(9) 97.1 ± 1.4(4)
C5% 94.7 ± 3.1(25) 94.3 ± 2.4(19) 94.9 ± 2.9(25) 96.3 ± 2.2(11) 95.7 ± 3.2(4)
C10% 91.9 ± 4.8(26) 91.7 ± 8.9(13) 92.1 ± 4.8(26) 92.1 ± 8.9(8) 91.8 ± 11.1(4)

Sonar 0% 87.1 ± 7.6(60) 87.1 ± 7.6(60) 87.5 ± 4.5(26) 91.4 ± 7.7(33) 88.9 ± 6.4(31)
C5% 84.9 ± 9.1(38) 83.3 ± 13.4(60) 87.2 ± 4.7(16) 89.7 ± 9.3(20) 84.9 ± 8.9(14)
C10% 82.2 ± 8.9(45) 81.2 ± 13.1(60) 83.3 ± 13.4(60) 88.5 ± 9.7(30) 83.7 ± 12.4(57)

Soybean 0% 91.2 ± 4.4(26) 91.1 ± 4.6(34) 93.7 ± 4.3(31) 95.0 ± 3.4(19) 94.8 ± 3.8(15)
C5% 87.2 ± 8.3(30) 87.2 ± 8.1(35) 87.1 ± 7.9(30) 90.7 ± 9.0(20) 89.9 ± 9.4(20)
C10% 84.2 ± 13.4(27) 84.0 ± 13.7(34) 84.3 ± 13.9(34) 88.7 ± 14.9(22) 88.0 ± 14.6(17)

Spam 0% 88.6 ± 3.8(52) 88.6 ± 3.8(57) 88.6 ± 3.6(36) 89.2 ± 2.1(34) 88.6 ± 3.9(50)
C5% 86.2 ± 9.3(52) 86.1 ± 9.3(57) 86.4 ± 9.5(41) 86.4 ± 8.8(46) 86.1 ± 9.3(56)
C10% 84.5 ± 12.4(55) 84.5 ± 12.4(56) 84.5 ± 12.6(53) 85.6 ± 11.6(36) 84.5 ± 12.5(53)

SRBCT 0% 79.7 ± 16.8(11) 83.2 ± 20.0(14) 70.1 ± 15.7(280) 93.3 ± 9.5(108) 88.0 ± 14.9(87)
C5% 78.5 ± 19.2(89) 82.1 ± 13.7(59) 63.8 ± 24.5(103) 91.8 ± 9.4(86) 85.1 ± 17.4(75)
C10% 70.5 ± 16.1(120) 74.7 ± 16.7(122) 53.2 ± 20.3(183) 85.7 ± 10.1(105) 76.9 ± 12.1(78)

(continued on next page)
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Table 7 (continued)

DataSet Noise Logistic-LASSO LASSO Exponential Loss BBL (FWL-L2) BBL (FWL-L1)

Wdbc 0% 96.7 ± 2.6(9) 95.4 ± 2.9(29) 96.8 ± 2.6(24) 97.2 ± 1.9(11) 96.5 ± 3.2(15)
C5% 91.5 ± 15.9(12) 91.2 ± 15.2(29) 91.7 ± 15.3(21) 92.3 ± 14.9(15) 92.2 ± 14.9(25)
C10% 88.3 ± 23.1(14) 88.4 ± 24.3(27) 89.1 ± 23.4(22) 90.7 ± 21.7(12) 88.6 ± 26.2(10)

Wine 0% 96.7 ± 2.9(7) 94.9 ± 5.1(13) 98.3 ± 2.8(7) 98.9 ± 2.3(6) 98.3 ± 3.7(7)
C5% 91.0 ± 16.4(7) 88.9 ± 15.2(13) 91.1 ± 17.7(5) 92.6 ± 16.0(6) 92.6 ± 15.9(7)
C10% 89.0 ± 20.5(8) 86.4 ± 25.7(13) 89.9 ± 15.5(10) 91.6 ± 17.9(7) 89.9 ± 15.5(10)

Zoo 0% 95.4 ± 8.4(16) 95.4 ± 8.4(16) 95.4 ± 8.4(11) 96.4 ± 8.3(8) 95.4 ± 8.4(16)
C5% 91.1 ± 12.1(12) 90.0 ± 12.3(5) 91.1 ± 12.1(11) 91.1 ± 12.1(12) 91.1 ± 12.1(12)
C10% 86.9 ± 10.3(16) 87.9 ± 11.9(7) 88.8 ± 10.5(13) 88.8 ± 8.9(14) 89.0 ± 11.2(6)

Ave. 0% 90.2(33.1) 89.1(33.6) 90.4(69.8) 93.4(34) 91.6(30)
C5% 87.0(34.6) 85.3(45.5) 86.5(52.6) 90.1(31.6) 87.3(25)
C10% 84.0(40.9) 81.9(48.7) 82.8(71.2) 88.3(37.9) 84.5(33)

C41 3.2 3.8 3.9 3.3 4.3
4 C42 6.2 7.2 7.6 5.1 7.1

Table 8
1NN performance comparison of classical methods with attribute noisy data (%).

DataSet Noise InfoGain Consistency Simba ReliefF MSVM-RFE

Breast 0% 98.8 ± 4.0(60) 87.5 ± 8.3(4) 98.8 ± 4.0(62) 97.1 ± 6.8(205) 100 ± 0.0(10)
F5% 96.3 ± 6.0(272) 73.3 ± 9.8(6) 98.6 ± 4.3(271) 95.8 ± 6.9(192) 100 ± 0.0(29)
F10% 89.2 ± 7.1(150) 64.6 ± 14.3(8) 89.6 ± 7.2(166) 92.5 ± 8.7(243) 100 ± 0.0(40)

Crx 0% 80.6 ± 12.9(6) 79.7 ± 13.5(12) 79.6 ± 11.4(9) 79.6 ± 11.4(9) 81.9 ± 8.3(10)
F5% 78.4 ± 12.2(14) 76.7 ± 14.8(1) 79.3 ± 11.8(12) 78.5 ± 11.1(8) 79.7 ± 12.2(3)
F10% 74.6 ± 9.6(5) 71.1 ± 14.1(1) 73.8 ± 11.2(7) 76.8 ± 9.8(10) 76.1 ± 10.4(4)

DLBCL 0% 97.3 ± 5.8(55) 84.0 ± 12.1(4) 100 ± 0.0(191) 98.3 ± 5.4(76) 100 ± 0.0(12)
F5% 97.0 ± 3.2(30) 81.4 ± 9.1(5) 99.0 ± 3.2(112) 98.3 ± 5.3(60) 100 ± 0.0(20)
F10% 95.3 ± 6.2(93) 67.2 ± 7.6(10) 96.3 ± 4.4(244) 98.3 ± 5.3(160) 100 ± 0.0(36)

German 0% 70.6 ± 1.5(2) 66.0 ± 3.4(15) 71.2 ± 2.8(10) 70.0 ± 1.2(1) 70.1 ± 3.7(8)
F5% 69.9 ± 3.8(10) 64.4 ± 3.3(5) 70.7 ± 3.3(15) 68.2 ± 4.2(18) 68.3 ± 4.3(13)
F10% 66.2 ± 4.0(20) 62.9 ± 4.0(6) 66.5 ± 4.2(12) 65.3 ± 5.1(16) 64.5 ± 3.9(3)

Iono 0% 91.2 ± 5.4(7) 88.4 ± 5.6(7) 90.7 ± 5.2(18) 91.8 ± 6.5(7) 92.4 ± 3.7(8)
F5% 87.8 ± 4.8(13) 83.3 ± 5.3(17) 86.1 ± 6.7(22) 87.8 ± 3.2(12) 89.5 ± 4.7(5)
F10% 74.0 ± 7.9(6) 73.2 ± 5.7(10) 75.5 ± 7.2(27) 77.1 ± 7.4(26) 74.2 ± 10.6(29)

Leukemial 0% 97.3 ± 5.7(24) 81.1 ± 12.5(4) 98.6 ± 4.5(158) 97.3 ± 5.7(22) 100 ± 0.0(16)
F5% 97.3 ± 5.7(62) 80.1 ± 11.1(4) 98.6 ± 3.9(104) 91.2 ± 0.9(25) 100 ± 0.0(23)
F10% 97.3 ± 5.7(62) 80.1 ± 11.1(4) 98.5 ± 3.9(104) 91.2 ± 0.9(25) 100 ± 0.0(23)

Sick 0% 97.3 ± 1.1(6) 96.6 ± 1.3(9) 96.6 ± 1.4(11) 97.3 ± 0.9(11) 97.2 ± 1.4(7)
F5% 90.9 ± 0.8(6) 90.0 ± 1.1(8) 91.1 ± 1.6(12) 91.2 ± 0.9(8) 90.8 ± 1.1(26)
F10% 89.4 ± 1.3(24) 89.1 ± 1.5(8) 89.2 ± 2.1(28) 89.2 ± 1.6(26) 89.6 ± 1.6(17)

Sonar 0% 87.5 ± 7.3(44) 82.2 ± 5.1(14) 87.6 ± 6.8(24) 88.5 ± 6.8(15) 88.9 ± 4.7(51)
F5% 84.2 ± 10.0(58) 75.5 ± 7.7(10) 86.9 ± 9.5(55) 86.9 ± 9.8(37) 84.6 ± 7.4(42)
F10% 69.8 ± 11.6(36) 58.6 ± 12.8(6) 75.5 ± 10.1(37) 73.1 ± 9.4(22) 70.7 ± 7.8(20)

Soybean 0% 93.6 ± 4.1(28) 88.0 ± 4.4(14) 91.1 ± 4.6(35) 92.7 ± 4.1(32) 94.5 ± 4.3(22)
F5% 90.9 ± 4.7(34) 81.6 ± 6.6(14) 89.2 ± 4.2(29) 91.7 ± 3.9(30) 92.4 ± 4.1(31)
F10% 72.1 ± 6.1(30) 73.2 ± 8.2(25) 75.4 ± 9.6(21) 73.1 ± 7.8(30) 75.9 ± 7.3(21)

Spam 0% 89.7 ± 3.0(33) 87.0 ± 3.1(25) 88.6 ± 3.9(57) 88.6 ± 3.9(57) 90.8 ± 2.4(18)
F5% 75.1 ± 3.8(43) 64.3 ± 4.4(34) 65.9 ± 4.0(36) 66.4 ± 5.0(42) 66.7 ± 4.8(16)
F10% 55.1 ± 22.3(44) 54.3 ± 23.8(57) 55.5 ± 21.3(55) 55.6 ± 23.4(51) 56.0 ± 23.4(53)

SRBCT 0% 81.9 ± 17.9(223) 71.3 ± 12.8(6) 88.8 ± 13.9(187) 84.7 ± 17.6(56) 91.4 ± 10.9(38)
F5% 80.1 ± 15.1(13) 64.0 ± 17.1(8) 86.9 ± 14.4(245) 84.7 ± 17.7(54) 91.0 ± 12.7(86)
F10% 60.5 ± 20.8(197) 51.1 ± 20.7(13) 78.1 ± 22.3(258) 83.5 ± 19.6(98) 87.6 ± 12.7(168)

Wdbc 0% 96.0 ± 2.9(20) 94.2 ± 3.7(7) 96.8 ± 2.5(25) 96.3 ± 2.5(10) 96.1 ± 2.7(5)
F5% 89.3 ± 5.6(8) 87.1 ± 4.5(7) 91.0 ± 7.1(12) 89.3 ± 6.7(9) 91.0 ± 7.1(12)
F10% 63.5 ± 10.2(8) 62.3 ± 9.3(10) 65.8 ± 8.2(9) 65.2 ± 7.9(12) 65.2 ± 8.0(12)

Wine 0% 97.6 ± 4.3(8) 95.5 ± 4.4(5) 98.3 ± 2.7(7) 96.5 ± 5.0(11) 97.6 ± 4.3(7)
F5% 90.5 ± 15.7(9) 90.5 ± 21.2(7) 91.1 ± 17.7(5) 89.5 ± 14.4(6) 91.0 ± 15.9(7)
F10% 89.5 ± 22.5(10) 85.8 ± 12.1(7) 89.9 ± 16.4(7) 89.0 ± 18.9(5) 90.5 ± 16.5(8)

Zoo 0% 95.4 ± 8.4(11) 92.1 ± 9.4(5) 95.4 ± 8.4(15) 95.4 ± 8.4(15) 95.4 ± 8.4(10)
F5% 91.1 ± 12.1(12) 90.0 ± 12.3(5) 91.1 ± 12.1(11) 91.1 ± 12.1(12) 91.1 ± 12.1(12)
F10% 86.9 ± 10.3(16) 87.9 ± 11.9(7) 88.8 ± 10.5(13) 88.8 ± 8.9(14) 89.0 ± 11.2(6)

Ave. 0% 91.1(37.6) 85.3(9.4) 91.6(57.8) 91.0(37.6) 92.6(15.9)
F5% 87.4(43.2) 78.8(9.6) 87.9(67.4) 86.9(37) 88.7(23.3)
F10% 77.3(59.6) 68.8(12.9) 79.0(73.3) 79.5(55.5) 80.9(34.6)

F41 3.7 6.5 3.7 4.1 3.9
4 F42 13.8 16.5 12.6 11.5 11.7
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Table 9
1NN performance comparison of margin-based techniques with attribute noisy data (%).

DataSet Noise Logistic-LASSO LASSO Exponential Loss BBL (FWL-L2) BBL (FWL-L1)

Breast 0% 93.8 ± 10.6(30) 89.2 ± 12.9(103) 99.2 ± 2.6(93) 100 ± 0.0(106) 98.8 ± 4.0(76)
F5% 92.7 ± 5.5(53) 87.9 ± 13.7(103) 95.3 ± 9.2(237) 100 ± 0.0(110) 98.6 ± 4.2(86)
F10% 90.8 ± 10.5(80) 87.6 ± 6.0(246) 85.0 ± 11.5(259) 93.8 ± 7.9(83) 91.7 ± 8.3(56)

Crx 0% 79.6 ± 13.7(13) 78.8 ± 11.6(13) 78.7 ± 11.2(15) 84.0 ± 9.7(10) 76.6 ± 13.8(7)
F5% 79.0 ± 12.5(5) 78.7 ± 12.1(13) 76.7 ± 9.9(12) 82.2 ± 9.9(11) 75.9 ± 13.7(6)
F10% 76.0 ± 10.6(7) 70.9 ± 8.6(15) 75.9 ± 8.9(9) 77.8 ± 11.0(7) 72.9 ± 10.7(5)

DLBCL 0% 98.0 ± 4.2(199) 96.0 ± 5.2(65) 100 ± 0.0(255) 100 ± 0.0(52) 98.3 ± 5.3(55)
F5% 96.3 ± 6.2(160) 96.0 ± 5.2(154) 98.3 ± 5.3(229) 100 ± 0.0(83) 98.3 ± 5.3(70)
F10% 93.3 ± 7.7(257) 89.6 ± 9.5(248) 95.6 ± 5.9(182) 100 ± 0.0(64) 96.7 ± 10.5(47)

German 0% 70.6 ± 3.3(2) 70.0 ± 3.6(1) 70.0 ± 1.2(1) 72.6 ± 3.2(17) 70.2 ± 1.3(5)
F5% 67.7 ± 3.4(17) 67.2 ± 2.9(23) 69.0 ± 3.3(16) 71.8 ± 5.4(13) 67.1 ± 3.6(24)
F10% 65.0 ± 5.1(4) 62.4 ± 3.2(11) 67.4 ± 5.3(10) 67.6 ± 3.3(10) 60.6 ± 4.1(24)

Iono 0% 91.8 ± 5.1(8) 86.4 ± 6.8(7) 91.0 ± 4.0(16) 92.6 ± 3.3(14) 91.8 ± 5.7(12)
F5% 86.9 ± 6.4(4) 83.8 ± 6.2(30) 87.0 ± 6.8(15) 89.2 ± 4.5(10) 85.8 ± 7.2(19)
F10% 75.3 ± 8.3(31) 73.9 ± 5.4(34) 77.3 ± 6.1(28) 78.4 ± 9.1(20) 75.5 ± 4.7(22)

Leukemial 0% 97.3 ± 5.7(8) 95.9 ± 6.6(36) 100 ± 0.0(158) 100 ± 0.0(49) 98.8 ± 4.0(41)
F5% 97.1 ± 9.1(22) 93.4 ± 7.0(111) 98.8 ± 3.9(61) 100 ± 0.0(51) 98.8 ± 4.0(73)
F10% 96.1 ± 6.3(43) 92.5 ± 5.3(213) 93.6 ± 9.1(126) 93.1 ± 6.3(60) 93.2 ± 11.5(44)

Sick 0% 96.3 ± 0.9(23) 95.6 ± 0.7(22) 96.2 ± 1.1(24) 97.5 ± 0.8(9) 97.1 ± 1.4(4)
F5% 90.4 ± 1.3(24) 91.1 ± 1.5(27) 90.6 ± 1.5(26) 91.6 ± 1.2(13) 90.3 ± 1.8(4)
F10% 89.6 ± 1.0(27) 89.7 ± 1.5(27) 89.6 ± 1.0(27) 89.7 ± 1.4(7) 89.9 ± 0.9(29)

Sonar 0% 87.1 ± 7.6(60) 87.1 ± 7.6(60) 87.5 ± 4.5(26) 91.4 ± 7.7(33) 88.9 ± 6.4(31)
F5% 84.2 ± 12.3(53) 84.2 ± 13.2(55) 85.5 ± 11.2(36) 90.9 ± 6.6(39) 88.0 ± 9.8(49)
F10% 68.7 ± 8.3(50) 64.9 ± 15.0(54) 74.1 ± 10.7(37) 78.8 ± 8.4(34) 71.2 ± 10.2(27)

Soybean 0% 91.2 ± 4.4(26) 91.1 ± 4.6(34) 93.7 ± 4.3(31) 95.0 ± 3.4(19) 94.8 ± 3.8(15)
F5% 90.2 ± 4.8(32) 89.8 ± 4.4(34) 92.5 ± 4.0(28) 93.7 ± 2.1(22) 92.1 ± 4.6(23)
F10% 72.6 ± 7.1(32) 71.4 ± 7.2(35) 72.4 ± 6.6(27) 77.3 ± 8.6(28) 71.9 ± 5.8(35)

Spam 0% 88.6 ± 3.8(52) 88.6 ± 3.8(57) 88.6 ± 3.6(36) 89.2 ± 2.1(34) 88.6 ± 3.9(50)
F5% 65.9 ± 2.8(11) 63.7 ± 3.7(56) 66.1 ± 4.3(49) 65.5 ± 3.4(48) 65.2 ± 3.7(46)
F10% 55.9 ± 1.2(25) 55.3 ± 2.8(51) 54.7 ± 4.1(55) 55.3 ± 3.1(50) 55.3 ± 2.8(52)

SRBCT 0% 79.7 ± 16.8(11) 83.2 ± 20.0(14) 70.1 ± 15.7(280) 93.3 ± 9.5(108) 88.0 ± 14.9(87)
F5% 79.2 ± 21.7(128) 81.5 ± 19.2(147) 69.4 ± 14.5(295) 92.4 ± 8.1(111) 87.7 ± 14.8(84)
F10% 69.1 ± 24.2(214) 70.7 ± 17.6(297) 68.6 ± 15.2(265) 86.0 ± 12.2(106) 85.8 ± 13.5(86)

Wdbc 0% 96.7 ± 2.6(9) 95.4 ± 2.9(29) 96.8 ± 2.6(24) 97.2 ± 1.9(11) 96.5 ± 3.2(15)
F5% 92.8 ± 5.9(25) 91.9 ± 3.2(30) 93.3 ± 2.9(16) 93.7 ± 3.2(10) 92.5 ± 3.3(9)
F10% 81.7 ± 5.6(20) 78.2 ± 6.5(30) 80.7 ± 5.8(23) 82.4 ± 4.1(21) 78.4 ± 7.7(12)

Wine 0% 96.7 ± 2.9(7) 94.9 ± 5.1(13) 98.3 ± 2.8(7) 98.9 ± 2.3(6) 98.3 ± 3.7(7)
F5% 91.0 ± 5.8(9) 88.7 ± 8.1(13) 91.0 ± 7.1(12) 92.1 ± 4.8(10) 91.0 ± 7.1(12)
F10% 68.6 ± 10.9(10) 61.3 ± 9.1(13) 65.8 ± 9.4(9) 68.6 ± 11.0(10) 64.5 ± 9.1(8)

Zoo 0% 95.4 ± 8.4(16) 95.4 ± 8.4(16) 95.4 ± 8.4(11) 96.4 ± 8.3(8) 95.4 ± 8.4(16)
F5% 94.4 ± 9.1(13) 94.4 ± 9.3(14) 95.4 ± 8.4(11) 95.4 ± 8.4(10) 95.4 ± 8.4(12)
F10% 91.7 ± 9.6(11) 90.4 ± 8.3(16) 92.7 ± 9.9(12) 92.9 ± 9.8(10) 92.8 ± 9.9(12)

Ave. 0% 90.2(33.1) 89.1(33.6) 90.4(69.8) 93.4(34) 91.6(30)
F5% 86.3(39.7) 85.2(57.9) 86.4(74.5) 89.9(38.6) 87.6(37)
F10% 78.2(57.9) 75.6(92.1) 78.1(76.4) 81.6(36.4) 78.6(33)

F41 3.9 4.0 4.0 3.5 4.0
4 F42 12.0 13.5 12.3 11.8 13.0
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LASSO, Exponential Loss and Consistency showed worse perfor-
mance compare with InfoGian, Logistic-LASSO and BBL (FWL-L1).

Next, we compare the performance of 1NN in terms of the attri-
bute noise. The results are described in Tables 8 and 9. Using FM2, it
be see that the performances of BBL (FWL-L2), ReliefF and MSVM-
RFE were similar in terms of their robustness. These three ranked
the highest and they were slightly better than Simba, Logistic-LAS-
SO, and Exponential Loss. There were no significant differences
between InfoGain and LASSO, and these two techniques were
worse than Simba, Logistic-LASSO, and Exponential Loss.
Consistency remained the worst. In terms of classification accuracy
and reduction ability, BBL (FWL-L2) showed much better
performance than the other methods and MSVM-RFE rank second.
They were at least 0.8% higher than the other methods in terms of
their classification accuracy. Furthermore, they used fewer features
than other methods, with the exception Consistency, which ranked
the worst.

Next, we compared the performance of the SVM-RBF classifier
in a noisy environment. The results with class noise are given in
Tables 10 and 11. Using CM1 and CM2, we found that BBL (FWL-
L2) was slightly lower than the other methods. Simba performed
worse than the others, but there were no obvious differences
among the other methods. In terms of the classification accuracy
and reduction ability, BBL (FWL-L2) and MSVM-RFE delivered al-
most the same performance and they were at least 0.9% higher
than the other methods in terms of the classification accuracy.
Consistency and Exponential Loss performed poorly and the rest
of methods delivered almost the same performance.

Tables 12 and 13 show the results when attribute noise was
added. Using CM1 and CM2, it show that MSVM-RFE performed



Table 10
SVM-RBF performance comparison of classical methods with class noisy data (%).

DataSet Noise InfoGain Consistency Simba ReliefF MSVM-RFE

Breast 0% 96.3 ± 6.1(54) 77.9 ± 9.2(4) 96.7 ± 5.5(33) 91.7 ± 8.4(77) 100 ± 0.0(9)
C5% 92.5 ± 8.7(18) 74.9 ± 11.7(5) 91.3 ± 13.2(38) 88.0 ± 12.9(74) 97.5 ± 7.9(17)
C10% 90.9 ± 11.5(58) 70.1 ± 14.8(5) 89.8 ± 11.2(44) 85.6 ± 15.3(93) 94.1 ± 11.5(15)

Crx 0% 85.5 ± 18.5(1) 84.1 ± 17.5(12) 85.5 ± 18.5(2) 85.5 ± 18.4(1) 85.6 ± 18.5(5)
C5% 81.6 ± 21.3(1) 79.0 ± 20.0(11) 81.6 ± 21.3(2) 81.6 ± 21.3(1) 81.6 ± 21.3(1)
C10% 79.5 ± 26.6(5) 78.9 ± 27.8(1) 78.9 ± 27.8(2) 78.9 ± 27.8(1) 79.6 ± 26.3(5)

DLBCL 0% 98.0 ± 4.2(28) 81.0 ± 13.2(4) 92.6 ± 7.1(21) 95.0 ± 3.3(42) 100 ± 0.0(13)
C5% 88.2 ± 9.3(15) 74.2 ± 11.5(7) 85.2 ± 12.8(27) 91.3 ± 8.7(19) 95.6 ± 7.8(21)
C10% 87.8 ± 11.1(23) 66.5 ± 14.8(6) 80.2 ± 19.4(27) 87.9 ± 14.3(20) 89.0 ± 12.8(23)

German 0% 75.9 ± 4(8) 74.5 ± 2.5(15) 74.6 ± 3.7(7) 76.0 ± 4.7(18) 76.1 ± 3.8(8)
C5% 72.4 ± 7.2(15) 72.0 ± 6.9(11) 72.3 ± 2.9(6) 71.4 ± 8.3(12) 73.6 ± 4.9(8)
C10% 70.5 ± 9.2(23) 68.8 ± 7.4(9) 70.1 ± 8.4(23) 70.2 ± 9.0(18) 70.7 ± 9.6(16)

Iono 0% 95.8 ± 3.6(23) 92.6 ± 3.7(7) 95.2 ± 3.8(14) 95.7 ± 3.4(16) 94.9 ± 3.9(30)
C5% 91.3 ± 14.3(21) 89.2 ± 13.8(13) 89.7 ± 14.9(33) 92.2 ± 12.6(16) 90.0 ± 14.9(31)
C10% 89.1 ± 17.8(23) 87.8 ± 17.5(11) 89.3 ± 15.1(28) 89.6 ± 13.6(19) 88.3 ± 16.7(33)

Leukemial 0% 97.3 ± 5.7(31) 74.5 ± 7.3(4) 97.3 ± 5.7(15) 98.6 ± 4.5(9) 100 ± 0.0(14)
C5% 91.6 ± 18.1(25) 71.5 ± 17.5(5) 93.0 ± 18.1(28) 91.9 ± 21.1(15) 97.8 ± 7.0(14)
C10% 90.9 ± 21.1(46) 66.4 ± 14.2(4) 91.9 ± 17.5(44) 91.6 ± 18.2(24) 94.5 ± 13.7(20)

Sick 0% 93.9 ± 0.1(1) 93.9 ± 0.1(9) 93.9 ± 0.1(1) 93.9 ± 0.1(1) 94.0 ± 0.2(16)
C5% 93.5 ± 2.8(23) 92.8 ± 1.5(12) 93.7 ± 3.1(11) 93.8 ± 3.2(4) 93.3 ± 2.5(24)
C10% 90.1 ± 0.5(1) 88.4 ± 6.3(12) 90.1 ± 0.3(1) 90.2 ± 0.2(7) 89.7 ± 1.7(1)

Sonar 0% 87.0 ± 6.8(49) 82.3 ± 7.0(14) 88.9 ± 5.7(39) 88.5 ± 6.1(55) 87.5 ± 6.9(31)
C5% 84.5 ± 16.3(48) 79.9 ± 16.3(16) 83.1 ± 15.9(45) 84.5 ± 16.0(46) 85.4 ± 12.2(28)
C10% 80.6 ± 11.9(58) 73.8 ± 17.3(13) 81.3 ± 11.9(60) 83.3 ± 11.9(60) 84.6 ± 11.8(48)

Soybean 0% 93.6 ± 3.7(28) 90.8 ± 3.6(14) 90.4 ± 4.7(34) 93.6 ± 3.7(30) 93.9 ± 4.6(11)
C5% 90.3 ± 9.5(29) 86.1 ± 9.1(14) 88.4 ± 9.1(35) 90.2 ± 9.4(23) 90.3 ± 9.2(29)
C10% 88.7 ± 13.9(29) 85.3 ± 14.4(15) 86.9 ± 13.3(35) 88.1 ± 13.6(28) 88.6 ± 13.5(29)

Spam 0% 92.1 ± 2.9(57) 90.0 ± 2.3(25) 92.2 ± 2.8(56) 92.1 ± 2.9(57) 92.2 ± 2.8(50)
C5% 87.7 ± 8.7(57) 84.8 ± 8.0(26) 87.7 ± 8.7(56) 87.7 ± 8.7(57) 87.7 ± 8.7(57)
C10% 83.7 ± 10.7(57) 80.9 ± 9.6(25) 83.7 ± 10.7(57) 83.7 ± 10.6(57) 83.7 ± 10.7(56)

SRBCT 0% 82.1 ± 26.8(51) 62.5 ± 18.7(6) 87.3 ± 16.9(40) 82.5 ± 25.0(33) 94.4 ± 8.1(22)
C5% 79.2 ± 26.1(17) 60.8 ± 19.8(7) 82.6 ± 21.2(23) 77.4 ± 26.7(14) 88.2 ± 13.9(20)
C10% 72.6 ± 22.8(203) 60.3 ± 19.4(9) 71.6 ± 19.9(25) 71.8 ± 27.7(31) 80.8 ± 11.9(19)

Wdbc 0% 98.1 ± 2.3(26) 96.5 ± 2.6(7) 98.1 ± 2.3(30) 98.1 ± 2.3(23) 98.1 ± 2.2(16)
C5% 93.0 ± 15.2(24) 92.3 ± 14.9(10) 93.0 ± 15.2(27) 93.2 ± 15.2(21) 92.8 ± 15.2(26)
C10% 88.9 ± 24.5(22) 88.6 ± 22.2(9) 88.7 ± 24.9(30) 88.7 ± 25.0(29) 89.2 ± 19.6(14)

Wine 0% 98.9 ± 2.3(12) 97.2 ± 4.0(5) 98.9 ± 2.3(6) 98.9 ± 2.3(13) 99.4 ± 1.8(9)
C5% 94.2 ± 16.6(11) 91.0 ± 16.4(7) 94.2 ± 16.6(13) 94.2 ± 16.6(12) 94.2 ± 16.6(9)
C10% 91.1 ± 21.2(11) 87.9 ± 22.3(7) 90.5 ± 22.9(12) 90.0 ± 24.5(13) 92.1 ± 14.5(6)

Zoo 0% 95.4 ± 8.4(12) 87.4 ± 11.5(5) 94.4 ± 8.4(15) 94.4 ± 8.4(13) 95.4 ± 8.4(6)
C5% 92.1 ± 11.5(10) 85.0 ± 13.0(5) 92.1 ± 11.4(11) 91.1 ± 11.1(12) 92.1 ± 11.5(10)
C10% 88.8 ± 10.7(12) 83.2 ± 11.7(7) 88.5 ± 11.9(11) 88.8 ± 10.7(12) 87.9 ± 10.0(8)

Ave. 0% 92.1(27.2) 84.7(9.4) 91.9(22.4) 91.8(27.7) 93.7(17.1)
C5% 88.0(22.4) 81.0(10.6) 87.7(25.4) 87.8(23.3) 90.0(21.1)
C10% 85.2(29.2) 77.6(9.5) 84.4(28.5) 84.9(29.4) 86.6(21)

C41 4.1 3.7 4.2 4.0 3.7
4 C42 6.9 7.1 7.5 6.9 7.1
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better than other methods in terms of the robustness. BBL (FWL-L2)
and Logistic-LASSO ranked below MSVM-RFE. Simba performed
the worst with attribute noise, but the other methods did not differ
significantly. MSVM-RFE performed the best in terms of the classi-
fication accuracy and reduction ability. Clearly, BBL (FWL-L2) had a
better classification performance and reduction capacity than the
other methods, except MSVM-RFE. Surprisingly, we found that Lo-
gistic-LASSO and BBL (FWL-L2) had almost the same robustness.
However, Logistic-LASSO ranked below BBL (FWL-L2) in terms of
the classification accuracy and the number of features. In the rest
of methods, ReliefF and BBL (FWL-L1) rank below Logistic-LASSO
regardless of robustness and the performance of feature selection.
Consistency still performed the worst in the feature selection task
with attribute noise.
The time complexities of the algorithms are shown in Table 14.
We assume that the dataset was S, which included M samples and
N attributes, P was the class number, and t was the number of iter-
ations. For ReliefF, k is the number of nearest neighbors selected.
Table 14 shows that InfoGain had a lower time complexity than
the other methods, whereas MSVM-RFE and Consistency had high-
er time complexities than the other methods. This was because
MSVM-RFE was based on wrapper model for feature reduction,
while Consistency was considered to be an enumeration method.
The remaining methods differed little so we selected some repre-
sentative methods and compared their runtimes to assess the
validity and practicality of the algorithms.

To compare the runtime of the algorithms, we only show the
runtime for seven relatively large datasets: Breast, DLBCL, German,



Table 11
SVM-RBF performance comparison of margin-based techniques with class noisy data (%).

DataSet Noise Logistic-LASSO LASSO Exponential Loss BBL (FWL-L2) BBL (FWL-L1)

Breast 0% 93.8 ± 10.6(22) 83.0 ± 10.5(46) 96.7 ± 5.5(41) 99.2 ± 2.6(31) 100 ± 0.0(22)
C5% 91.3 ± 11.8(29) 80.5 ± 8.7(31) 95.0 ± 12.1(23) 96.8 ± 9.8(44) 94.1 ± 11.5(44)
C10% 89.7 ± 11.3(28) 78.9 ± 10.4(38) 91.8 ± 11.2(37) 91.3 ± 11.5(40) 90.0 ± 11.8(52)

Crx 0% 85.5 ± 18.5(3) 85.2 ± 18.3(12) 85.5 ± 18.5(2) 85.5 ± 18.5(3) 85.5 ± 18.5(5)
C5% 81.6 ± 21.3(2) 80.9 ± 20.9(12) 82.6 ± 15.1(5) 81.8 ± 21.3(3) 81.6 ± 21.4(5)
C10% 79.7 ± 26.0(6) 78.4 ± 27.3(12) 76.1 ± 3.4(12) 80.5 ± 26.6(10) 79.1 ± 27.5(5)

DLBCL 0% 98.0 ± 4.2(23) 90.0 ± 9.4(27) 93.6 ± 5.7(21) 99.0 ± 3.2(25) 97.0 ± 4.8(31)
C5% 93.5 ± 5.6(24) 85.6 ± 12.9(25) 88.7 ± 14.5(37) 95.2 ± 7.5(22) 92.7 ± 13.7(30)
C10% 91.2 ± 8.7(15) 82.3 ± 13.1(26) 82.2 ± 16.1(61) 93.7 ± 10.5(24) 86.4 ± 12.1(32)

German 0% 76.4 ± 3.3(16) 74.0 ± 3.6(23) 73.4 ± 2.6(24) 77.0 ± 2.2(11) 74.8 ± 3.5(12)
C5% 72.0 ± 7.4(17) 70.6 ± 7.5(22) 72.5 ± 6.2(9) 73.4 ± 4.7(9) 72.2 ± 3.0(14)
C10% 70.6 ± 8.7(21) 69.8 ± 9.2(24) 71.0 ± 9.5(18) 71.7 ± 8.7(18) 69.8 ± 7.4(14)

Iono 0% 95.2 ± 4.2(25) 94.9 ± 4.2(28) 95.2 ± 3.8(15) 96.0 ± 3.6(18) 95.2 ± 3.8(28)
C5% 90.3 ± 14.5(14) 90.3 ± 12.4(21) 89.7 ± 14.8(13) 90.8 ± 14.1(25) 90.0 ± 14.9(30)
C10% 88.3 ± 16.7(34) 88.3 ± 16.9(33) 88.5 ± 16.9(32) 89.1 ± 15.9(26) 89.6 ± 16.1(32)

Leukemial 0% 97.3 ± 5.7(10) 94.4 ± 7.3(48) 97.5 ± 5.3(32) 100 ± 0.0(17) 97.3 ± 5.7(9)
C5% 93.2 ± 17.6(23) 90.3 ± 17.4(41) 93.0 ± 17.7(32) 95.6 ± 14.0(32) 93.8 ± 17.5(30)
C10% 91.6 ± 18.0(9) 87.7 ± 17.1(31) 87.9 ± 17.1(44) 93.9 ± 18.1(21) 90.1 ± 15.1(4)

Sick 0% 94.0 ± 0.2(22) 93.9 ± 0.1(1) 93.9 ± 0.2(20) 94.0 ± 0.8(14) 93.9 ± 0.2(8)
C5% 93.4 ± 2.8(26) 93.8 ± 3.2(6) 93.4 ± 2.6(21) 93.6 ± 3.0(18) 92.8 ± 1.5(3)
C10% 90.1 ± 0.3(1) 90.1 ± 0.3(6) 90.1 ± 0.6(1) 90.1 ± 0.3(1) 90.0 ± 0.6(3)

Sonar 0% 88.9 ± 7.2(50) 88.0 ± 7.9(50) 89.0 ± 6.4(35) 89.9 ± 4.7(40) 88.9 ± 7.2(43)
C5% 83.1 ± 14.3(48) 84.0 ± 15.6(57) 83.6 ± 15.4(55) 87.2 ± 15.8(32) 85.4 ± 10.3(42)
C10% 81.7 ± 10.9(59) 81.6 ± 12.1(57) 83.2 ± 11.9(60) 85.9 ± 10.6(45) 84.0 ± 15.2(49)

Soybean 0% 91.5 ± 5.9(20) 91.7 ± 4.7(25) 94.2 ± 3.7(27) 95.0 ± 3.4(24) 94.2 ± 3.8(28)
C5% 88.5 ± 9.6(30) 88.6 ± 9.2(30) 88.5 ± 9.6(30) 90.6 ± 9.5(20) 89.6 ± 9.2(29)
C10% 86.9 ± 13.3(35) 87.0 ± 12.9(28) 86.9 ± 13.3(35) 89.1 ± 13.9(27) 88.5 ± 13.6(25)

Spam 0% 92.2 ± 2.8(52) 92.1 ± 3.0(55) 92.2 ± 2.9(56) 92.2 ± 2.8(53) 92.1 ± 2.8(57)
C5% 87.7 ± 8.8(54) 87.7 ± 8.8(50) 87.7 ± 8.8(57) 87.7 ± 8.7(57) 87.7 ± 8.6(56)
C10% 83.7 ± 10.7(57) 83.7 ± 10.7(57) 83.7 ± 10.6(55) 83.8 ± 10.6(45) 83.6 ± 10.8(55)

SRBCT 0% 83.3 ± 22.4(14) 85.4 ± 19.2(36) 77.7 ± 24.3(23) 88.0 ± 9.5(29) 81.0 ± 23.5(6)
C5% 81.8 ± 18.9(15) 81.2 ± 16.4(18) 74.3 ± 20.6(26) 87.4 ± 12.3(17) 75.8 ± 9.9(7)
C10% 71.2 ± 22.1(15) 77.3 ± 14.5(37) 70.6 ± 23.1(100) 81.7 ± 19.7(36) 65.7 ± 20.9(4)

Wdbc 0% 98.1 ± 2.2(17) 98.1 ± 2.2(30) 98.1 ± 2.3(21) 98.1 ± 2.2(27) 98.1 ± 2.3(25)
C5% 93.3 ± 15.3(19) 92.8 ± 15.2(27) 93.0 ± 15.2(25) 93.2 ± 15.2(20) 93.0 ± 15.2(27)
C10% 89.1 ± 22.4(14) 88.9 ± 25.0(29) 88.7 ± 24.9(30) 89.1 ± 21.2(9) 91.6 ± 17.6(30)

Wine 0% 98.9 ± 2.3(13) 98.9 ± 2.3(13) 99.4 ± 1.8(7) 99.4 ± 2.3(6) 98.9 ± 2.3(6)
C5% 94.2 ± 16.6(10) 94.2 ± 16.6(13) 94.2 ± 16.6(13) 94.2 ± 16.6(13) 94.2 ± 16.6(13)
C10% 90.0 ± 24.5(13) 90.0 ± 24.6(13) 90.5 ± 22.9(12) 92.1 ± 18.0(9) 93.1 ± 14.9(8)

Zoo 0% 94.4 ± 8.4(13) 94.4 ± 8.4(12) 94.4 ± 8.4(10) 95.4 ± 8.4(7) 95.4 ± 8.4(8)
C5% 90.0 ± 11.9(13) 91.1 ± 11.1(12) 91.1 ± 11.1(11) 92.1 ± 11.5(12) 92.1 ± 11.5(16)
C10% 86.8 ± 13.1(13) 86.8 ± 11.9(14) 88.5 ± 11.9(10) 88.8 ± 10.7(12) 87.9 ± 10.0(16)

Ave. 0% 92.0(21) 90.3(29) 91.5(23.9) 93.5(21.8) 92.3(20.6)
C5% 88.1(23) 86.5(26) 87.7(25.5) 90.0(23.1) 88.2(24.7)
C10% 85.0(23) 83.6(29) 84.3(36.2) 87.2(23.0) 85.0(23.5)

C41 3.8 3.8 3.8 3.5 4.1
4 C42 6.9 6.7 7.2 6.3 7.3

Table 12
SVM-RBF performance comparison of classical methods with attribute noisy data (%).

DataSet Noise InfoGain Consistency Simba ReliefF MSVM-RFE

Breast 0% 96.3 ± 6.1(54) 77.9 ± 9.2(4) 96.7 ± 5.5(33) 91.7 ± 8.4(77) 100 ± 0.0(9)
F5% 87.5 ± 5.9(23) 76.7 ± 16.5(6) 93.3 ± 9.2(29) 86.6 ± 9.8(42) 100 ± 0.0(10)
F10% 78.8 ± 8.8(26) 72.5 ± 18.5(8) 66.8 ± 10.5(11) 81.8 ± 17.1(33) 96.3 ± 6.0(28)

Crx 0% 85.5 ± 18.5(1) 84.1 ± 17.5(12) 85.5 ± 18.5(2) 85.5 ± 18.4(1) 85.6 ± 18.5(5)
F5% 85.5 ± 18.5(1) 83.5 ± 18.5(1) 85.5 ± 18.5(2) 85.5 ± 18.5(1) 85.5 ± 18.5(1)
F10% 82.0 ± 16.4(7) 81.7 ± 16.5(1) 82.6 ± 15.5(7) 82.8 ± 15.3(11) 82.3 ± 15.3(10)

DLBCL 0% 98.0 ± 4.2(28) 81.0 ± 13.2(4) 92.6 ± 7.1(21) 95.0 ± 3.3(42) 100 ± 0.0(13)
F5% 98.0 ± 4.2(25) 77.3 ± 13.4(5) 90.9 ± 7.1(25) 94.0 ± 7.0(30) 100 ± 0.0(16)
F10% 89.8 ± 8.2(30) 65.2 ± 11.3(10) 70.4 ± 14.0(15) 85.3 ± 10.3(27) 96.0 ± 8.4(16)

German 0% 75.9 ± 4(8) 74.5 ± 2.5(15) 74.6 ± 3.7(7) 76.0 ± 4.7(18) 76.1 ± 3.8(8)
F5% 75.1 ± 4.2(23) 74.2 ± 3.3(5) 75.1 ± 3.7(14) 75.7 ± 4.8(19) 76.1 ± 4.0(9)

(continued on next page)
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Table 12 (continued)

DataSet Noise InfoGain Consistency Simba ReliefF MSVM-RFE

F10% 72.9 ± 2.6(24) 70.8 ± 1.6(6) 73.1 ± 2.3(19) 72.9 ± 2.6(24) 73.6 ± 2.6(18)

Iono 0% 95.8 ± 3.6(23) 92.6 ± 3.7(7) 95.2 ± 3.8(14) 95.7 ± 3.4(16) 94.9 ± 3.9(30)
F5% 94.9 ± 4.8(34) 90.9 ± 7.4(17) 94.9 ± 4.8(34) 94.9 ± 5.2(22) 94.9 ± 4.8(33)
F10% 87.0 ± 7.8(33) 82.4 ± 6.8(10) 87.6 ± 8.3(25) 86.1 ± 7.0(29) 87.3 ± 6.8(32)

Leukemial 0% 97.3 ± 5.7(31) 74.5 ± 7.3(4) 97.3 ± 5.7(15) 98.6 ± 4.5(9) 100 ± 0.0(14)
F5% 97.3 ± 5.3(51) 73.2 ± 8.5(4) 97.3 ± 5.7(13) 98.6 ± 4.5(16) 100 ± 0.0(11)
F10% 93.6 ± 9.0(32) 68.4 ± 12.9(6) 85.9 ± 12.0(21) 87.8 ± 10.2(9) 100 ± 0.0(18)

Sick 0% 93.9 ± 0.1(1) 93.9 ± 0.1(9) 93.9 ± 0.1(1) 93.9 ± 0.1(1) 94.0 ± 0.2(16)
F5% 93.9 ± 0.1(1) 93.9 ± 0.1(8) 93.8 ± 0.1(1) 93.8 ± 0.1(1) 93.8 ± 0.1(1)
F10% 93.9 ± 0.1(1) 93.9 ± 0.1(8) 93.8 ± 0.1(1) 93.8 ± 0.1(1) 93.7 ± 0.1(1)

Sonar 0% 87.0 ± 6.8(49) 82.3 ± 7.0(14) 88.9 ± 5.7(39) 88.5 ± 6.1(55) 87.5 ± 6.9(31)
F5% 84.6 ± 6.0(35) 78.4 ± 6.0(10) 84.2 ± 7.1(33) 84.1 ± 7.9(53) 86.1 ± 8.1(38)
F10% 76.4 ± 7.2(36) 67.8 ± 10.7(6) 77.9 ± 8.5(41) 78.3 ± 9.5(27) 77.4 ± 9.8(47)

Soybean 0% 93.6 ± 3.7(28) 90.8 ± 3.6(14) 90.4 ± 4.7(34) 93.6 ± 3.7(30) 93.9 ± 4.6(11)
F5% 93.3 ± 4.6(31) 87.1 ± 5.0(14) 88.1 ± 10.2(27) 93.2 ± 3.5(32) 90.1 ± 7.3(21)
F10% 83.1 ± 5.6(34) 82.0 ± 6.5(25) 83.2 ± 5.0(26) 83.3 ± 5.6(34) 83.1 ± 5.2(29)

Spam 0% 92.1 ± 2.9(57) 90.0 ± 2.3(25) 92.2 ± 2.8(56) 92.1 ± 2.9(57) 92.2 ± 2.8(50)
F5% 76.9 ± 5.3(38) 76.5 ± 5.4(34) 76.8 ± 5.6(52) 76.7 ± 5.4(51) 76.7 ± 5.3(51)
F10% 63.4 ± 2.5(33) 62.8 ± 1.9(57) 62.9 ± 2.1(44) 63.1 ± 17.9(47) 63.8 ± 21.9(24)

SRBCT 0% 82.1 ± 26.8(51) 62.5 ± 18.7(6) 87.3 ± 16.9(40) 82.5 ± 25.0(33) 94.4 ± 8.1(22)
F5% 82.1 ± 25.4(12) 62.3 ± 24.2(8) 78.1 ± 31.8(31) 82.4 ± 20.9(18) 94.4 ± 9.6(26)
F10% 65.5 ± 22.4(11) 56.6 ± 26.7(13) 66.6 ± 19.6(22) 79.7 ± 19.6(15) 93.3 ± 12.1(22)

Wdbc 0% 98.1 ± 2.3(26) 96.5 ± 2.6(7) 98.1 ± 2.3(30) 98.1 ± 2.3(23) 98.1 ± 2.2(16)
F5% 95.3 ± 3.0(24) 93.8 ± 3.8(9) 95.6 ± 2.9(23) 95.4 ± 2.5(14) 95.9 ± 2.6(10)
F10% 87.7 ± 3.3(30) 85.6 ± 4.8(13) 87.7 ± 4.2(28) 88.1 ± 4.1(26) 87.9 ± 3.5(21)

Wine 0% 98.9 ± 2.3(12) 97.2 ± 4.0(5) 98.9 ± 2.3(6) 98.9 ± 2.3(13) 99.4 ± 1.8(9)
F5% 93.1 ± 5.6(10) 89.3 ± 7.2(7) 93.7 ± 6.0(12) 93.1 ± 5.6(11) 93.7 ± 6.0(12)
F10% 76.9 ± 7.6(13) 73.6 ± 9.0(10) 76.9 ± 7.6(12) 77.4 ± 6.8(8) 76.9 ± 7.6(13)

Zoo 0% 95.4 ± 8.4(12) 87.4 ± 11.5(5) 94.4 ± 8.4(15) 94.4 ± 8.4(13) 95.4 ± 8.4(6)
F5% 94.3 ± 8.5(12) 85.4 ± 8.3(6) 94.3 ± 8.4(9) 93.8 ± 10.1(8) 94.4 ± 8.5(8)
F10% 92.3 ± 8.0(11) 83.7 ± 10.2(7) 92.3 ± 8.0(12) 92.3 ± 8.0(12) 92.3 ± 8.0(11)

Ave. 0% 92.1(27.2) 84.7(9.4) 91.9(22.4) 91.8(27.7) 93.7(17.1)
F5% 89.4(22.9) 81.6(9.6) 88.7(21.8) 89.1(22.7) 91.5(17.6)
F10% 81.7(22.9) 74.8(12.9) 79.1(20.3) 82.3(21.6) 86.0(20.7)

F41 2.7 3.1 3.2 2.6 2.1
4 F42 10.5 9.9 12.7 9.4 7.7

Table 13
SVM-RBF performance comparison of margin-based techniques with attribute noisy data (%).

DataSet Noise Logistic-LASSO LASSO Exponential Loss BBL (FWL-L2) BBL (FWL-L1)

Breast 0% 93.8 ± 10.6(22) 83.0 ± 10.5(46) 96.7 ± 5.5(41) 99.2 ± 2.6(31) 100 ± 0.0(22)
F5% 93.8 ± 6.6(25) 82.5 ± 10.5(33) 91.3 ± 11.9(38) 95.4 ± 6.0(21) 92.1 ± 9.1(30)
F10% 86.7 ± 7.3(24) 76.3 ± 10.3(28) 84.6 ± 11.7(29) 94.2 ± 8.8(14) 88.7 ± 8.8(18)

Crx 0% 85.5 ± 18.5(3) 85.2 ± 18.3(12) 85.5 ± 18.5(2) 85.5 ± 18.5(3) 85.5 ± 18.5(5)
F5% 85.4 ± 18.3(1) 85.2 ± 18.4(12) 81.6 ± 21.3(2) 85.5 ± 18.3(3) 85.5 ± 18.4(4)
F10% 82.0 ± 16.6(2) 82.5 ± 15.0(14) 79.1 ± 27.4(9) 83.2 ± 15.9(7) 82.6 ± 16.6(8)

DLBCL 0% 98.0 ± 4.2(23) 90.0 ± 9.4(27) 93.6 ± 5.7(21) 99.0 ± 3.2(25) 97.0 ± 4.8(31)
F5% 94.6 ± 5.9(9) 87.6 ± 10.3(32) 90.1 ± 7.1(18) 97.3 ± 7.0(29) 97.0 ± 4.8(19)
F10% 87.1 ± 7.9(24) 71.1 ± 9.2(34) 81.3 ± 14.1(18) 92.6 ± 12.2(21) 86.7 ± 9.8(19)

German 0% 76.4 ± 3.3(16) 74.0 ± 3.6(23) 73.4 ± 2.6(24) 77.0 ± 2.2(11) 74.8 ± 3.5(12)
F5% 75.0 ± 4.8(20) 73.1 ± 4.2(23) 73.3 ± 3.6(13) 76.5 ± 4.2(17) 74.8 ± 3.5(24)
F10% 70.6 ± 8.7(21) 69.8 ± 9.2(24) 71.0 ± 9.5(18) 71.7 ± 8.7(18) 69.8 ± 7.4(14)

Iono 0% 95.2 ± 4.2(25) 94.9 ± 4.2(28) 95.2 ± 3.8(15) 96.0 ± 3.6(18) 95.2 ± 3.8(28)
F5% 94.9 ± 4.8(34) 94.9 ± 4.8(34) 94.9 ± 4.8(34) 95.0 ± 4.7(30) 94.9 ± 4.2(31)
F10% 86.7 ± 7.8(30) 86.4 ± 7.9(32) 87.6 ± 7.2(27) 88.1 ± 8.4(31) 86.7 ± 6.5(20)

Leukemial 0% 97.3 ± 5.7(10) 94.4 ± 7.3(48) 97.5 ± 5.3(32) 100 ± 0.0(17) 97.3 ± 5.7(9)
F5% 97.2 ± 4.5(13) 91.7 ± 11.5(41) 95.8 ± 3.9(33) 100 ± 0.0(20) 95.0 ± 8.7(30)
F10% 97.1 ± 6.2(17) 87.8 ± 14.5(30) 86.8 ± 9.0(16) 96.9 ± 10.5(17) 93.8 ± 10.8(11)

Sick 0% 94.0 ± 0.2(22) 93.9 ± 0.1(1) 93.9 ± 0.2(20) 94.0 ± 0.8(14) 93.9 ± 0.2(8)
F5% 93.8 ± 0.1(1) 93.8 ± 0.1(1) 93.9 ± 0.1(1) 93.8 ± 0.1(1) 93.9 ± 0.2(1)
F10% 93.8 ± 0.1(1) 93.8 ± 0.1(1) 93.9 ± 0.1(1) 93.8 ± 0.1(1) 93.9 ± 0.2(1)

Sonar 0% 88.9 ± 7.2(50) 88.0 ± 7.9(50) 89.0 ± 6.4(35) 89.9 ± 4.7(40) 88.9 ± 7.2(43)
F5% 84.1 ± 8.5(50) 82.2 ± 8.3(60) 84.6 ± 6.7(34) 86.1 ± 6.9(33) 84.6 ± 8.3(38)
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Table 13 (continued)

DataSet Noise Logistic-LASSO LASSO Exponential Loss BBL (FWL-L2) BBL (FWL-L1)

F10% 76.4 ± 9.5(50) 73.5 ± 8.1(56) 76.0 ± 8.0(49) 79.8 ± 5.6(39) 75.0 ± 9.8(29)

Soybean 0% 91.5 ± 5.9(20) 91.7 ± 4.7(25) 94.2 ± 3.7(27) 95.0 ± 3.4(24) 94.2 ± 3.8(28)
F5% 89.9 ± 9.9(27) 89.6 ± 10.7(35) 94.1 ± 3.6(28) 94.9 ± 3.6(26) 94.1 ± 3.5(26)
F10% 83.4 ± 6.2(33) 82.7 ± 6.3(35) 82.7 ± 6.3(35) 83.6 ± 5.9(32) 83.6 ± 5.3(21)

Spam 0% 92.2 ± 2.8(52) 92.1 ± 3.0(55) 92.2 ± 2.9(56) 92.2 ± 2.8(53) 92.1 ± 2.8(57)
F5% 76.6 ± 5.6(56) 76.6 ± 5.4(57) 76.6 ± 5.4(53) 76.7 ± 5.5(49) 72.2 ± 5.8(26)
F10% 62.9 ± 21.7(26) 63.0 ± 21.8(56) 63.1 ± 21.8(55) 62.9 ± 22.1(52) 62.6 ± 17.8(32)

SRBCT 0% 83.3 ± 22.4(14) 85.4 ± 19.2(36) 77.7 ± 24.3(23) 88.0 ± 9.5(29) 81.0 ± 23.5(6)
F5% 83.3 ± 22.4(16) 83.5 ± 22.0(44) 77.6 ± 24.7(56) 85.8 ± 18.7(36) 79.0 ± 22.1(42)
F10% 79.9 ± 22.9(24) 75.5 ± 12.9(38) 74.7 ± 18.4(54) 79.3 ± 20.4(13) 77.4 ± 13.9(25)

Wdbc 0% 98.1 ± 2.2(17) 98.1 ± 2.2(30) 98.1 ± 2.3(21) 98.1 ± 2.2(27) 98.1 ± 2.3(25)
F5% 95.4 ± 2.5(12) 94.7 ± 2.9(30) 95.4 ± 3.0(25) 96.3 ± 2.5(10) 95.6 ± 2.8(20)
F10% 88.4 ± 3.3(28) 87.7 ± 3.3(30) 87.7 ± 3.3(30) 89.1 ± 3.7(26) 87.9 ± 5.4(24)

Wine 0% 98.9 ± 2.3(13) 98.9 ± 2.3(13) 99.4 ± 1.8(7) 99.4 ± 2.3(6) 98.9 ± 2.3(6)
F5% 93.2 ± 3.7(10) 92.0 ± 5.8(13) 93.8 ± 4.3(10) 94.2 ± 6.3(11) 93.1 ± 6.2(13)
F10% 76.9 ± 7.6(13) 76.9 ± 7.6(13) 76.9 ± 9.3(12) 79.2 ± 7.6(11) 76.3 ± 7.5(11)

Zoo 0% 94.4 ± 8.4(13) 94.4 ± 8.4(12) 94.4 ± 8.4(10) 95.4 ± 8.4(7) 95.4 ± 8.4(8)
F5% 93.4 ± 8.2(10) 92.8 ± 9.9(14) 93.8 ± 10.1(10) 95.4 ± 8.5(8) 93.8 ± 8.3(16)
F10% 92.3 ± 8.1(11) 91.4 ± 7.5(14) 92.3 ± 8.0(12) 92.4 ± 7.9(9) 92.3 ± 8.1(16)

Ave. 0% 92.0(21) 90.3(29) 91.5(23.9) 93.5(21.8) 92.3(20.6)
F5% 89.3(20) 87.2(31) 88.3(25.4) 90.9(21.2) 88.9(22.9)
F10% 83.3(22) 80.1(29) 81.4(26.3) 84.9(20.9) 82.8(18.5)

F41 2.7 3.1 3.2 2.6 3.4
4 F42 8.7 10.2 10.1 8.6 9.5

Table 15
Comparison of the runtime (seconds).

DataSet Simba ReliefF LASSO BBL (FWL-L1) BBL (FWL-L2)

Breast 53.42 81.81 35.82 943.35 44.78
DLBCL 28.26 36.13 47.23 475.13 27.48
German 78.13 178.02 53.55 1.42 � 103 90.21
Leukemial 37.41 49.49 26.20 645.45 38.34
Sick 246.36 482.25 355.23 1.01 � 104 258.17
Spam 2.92 � 103 8.45 � 103 5.38 � 103 2.78 � 104 3.05 � 103

SRBCT 16.51 22.41 6.83 246.53 17.06

Table 14
Comparison of the time complexity.

Name Time complexity Name Time complexity

ReliefF H(tMNlogk) Consistency H(77N5)
Simba H(tMN) InfoGain H(MN)
LASSO H(MNmin{M,N}) Exponential Loss H(tMN)
Logistic-LASSO H(MNmin{M,N}) BBL (FWL-L1) H(tMN)
MSVM-RFE H(PMN3) BBL (FWL-L2) H(tMN)
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Leukemial, Sick, Spam, and SRBCT, where Spam had a relatively
high number of samples, while Breast, DLBCL, Leukemial, and
SRBCT had a relatively high numbers of features. For the ReliefF
algorithm, we set k as 10 and calculated the average margin. For
BBL (FWL-L1) and BBL (FWL-L2), we assumed that the parameter
p was set to the optimal value. Table 15 shows the runtime for fea-
ture selection using the five methods. BBL (FWL-L1) was much
slower than the other methods because the sparse parameter t
was obtained based on the cross-validation of the classification
accuracy. The other methods had similar runtime.

5. Conclusions

Noise is widespread in real-world data, so robust feature
selection algorithms are highly desirable. Brownboost loss is a mar-
gin-induced evaluation function, which is used for classification
learning that is considered more robust than other loss functions.
In this study, we developed a algorithm for feature selection based
on L2-norm regularized Brownboost loss with gradient descent
techniques. We compared our algorithm with some representative
feature selection methods in terms of the classification perfor-
mance, dimensionality reduction capacity, and robustness.

After extensive experimental analyses, we reached the following
conclusions. With 1NN and SVM-RBF, BBL (FWL-L2) performed bet-
ter than the other methods using the raw datasets, with the excep-
tion of MSVM-RFE. In a noisy environment, BBL (FWL-L2) was more
robust than the other methods to class noise and attribute noise,
although it was slightly weaker than MSVM-RFE when only attri-
bute noise was considered. However, MSVM-RFE is a wrapper tech-
nique so it requires a much longer runtime. Thus, BBL (FWL-L2) was
still the most suitable for real-world applications. BBL (FWL-L2) per-
formed the best of the nine filter techniques. We also found that BBL
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(FWL-L2) performed much better than BBL (FWL-L1) in terms of its
robustness and classification performance.
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