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a b s t r a c t

Rough set theory has been extensively discussed in the domain of machine learning and
data mining. Pawlak’s rough set theory offers a formal theoretical framework for attribute
reduction and rule learning from nominal data. However, this model is not applicable to
numerical data, which widely exist in real-world applications. In this work, we extend this
framework to numerical feature spaces by replacing partition of universe with neighbor-
hood covering and derive a neighborhood covering reduction based approach to extracting
rules from numerical data. We first analyze the definition of covering reduction and point
out its advantages and disadvantages. Then we introduce the definition of relative covering
reduction and develop an algorithm to compute it. Given a feature space, we compute the
neighborhood of each sample and form a neighborhood covering of the universe, and then
employ the algorithm of relative covering reduction to the neighborhood covering, thus
derive a minimal covering rule set. Some numerical experiments are presented to show
the effectiveness of the proposed technique.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In the last decade, we have witnessed great progress in rough set theory and its applications [7,20,22,25,33,34]. Since
Pawlak’s initiative work in the beginning of 1980s, this theory has become a powerful tool to deal with imperfect and incon-
sistent data, and extract useful knowledge from a given dataset [3,4,12,23,24,30,32].

The key idea of rough set theory is to divide the universe into a collection of subsets (called information granules or ele-
mental concepts) according to the relation between objects, and then use these subsets to approximate arbitrary subsets of
the universe. Thus there are two ways to generalize the model introduced by Pawlak: the way to generate information gran-
ules used in approximation and the way to approximate concepts in the universe.

First, Pawlak considered equivalence relations and generated a partition of the universe. The derived model can be used
to deal with datasets described with nominal features. However, in real-world applications the relations between objects
are much more complex than equivalence relations. Similarity relation, neighborhood relation and dominance relation are
usually used in reasoning. Based on this observation, similarity relation rough sets [26], neighborhood rough sets [18,15],
and dominance rough sets [1,10,11] were developed one by one. The family of subsets induced with these relations forms
a covering of the universe, instead of a partition, thus all these models can be categorized into covering rough sets [41].
The general properties of covering rough sets were widely discussed in these years [44,45]. In addition, in the above mod-
els, the information granules used in approximation are crisp, whereas we usually employ fuzzy concepts to approxi-
mately describe a subset of objects. In this context, fuzzy information granules are preferred. As a result, fuzzy rough
sets and rough fuzzy sets were developed [7]. As to rough fuzzy sets, crisp information granules are used to approximate
fuzzy concepts. In the case of fuzzy rough sets we use fuzzy granules to approximate rough concepts. All the above models
. All rights reserved.
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simulate a certain way in that human reasons and makes decisions. So these models satisfy some requirement of real-
world applications.

Second, different approximating ways were developed in computing lower and upper approximations. In Pawlak’s mod-
els, the information granules are grouped into the lower approximation of a set if all the elements in these granules belong to
the same set and the information granules are grouped into the upper approximation of the set if one of the elements in
these granules belongs to it. These definitions are too strict to bear the influence of noise, which leads to the algorithms
developed on this model sensitive to noisy information. In order to overcome this problem, decision-theoretic rough sets
[38,39], variable precision rough sets (VPRS) [46], Bayesian rough sets [27] and probabilistic rough sets [36,37] were de-
signed. In the meanwhile, several fuzzy approximation operators were proposed based on different triangular norms, trian-
gular conorms and implication operators [14,16,17,20,25,33,40,42].

Among these generalizations, covering rough sets and fuzzy rough sets have gained much attention from the domains of
machine learning and uncertainty reasoning. In this work we will focus on the theoretic foundation of relative covering
reduction for covering approximation spaces and develop a rule learning algorithm based on neighborhood covering reduc-
tion. In fact covering reduction has been extensively discussed in literature. Two classes of covering reduction have been re-
ported so far. The first one is to reduce the redundant elements in a covering by search the minimal description of objects
[35,44,45]. In this way, the redundant representation of a covering approximation space is reduced. The second one is to re-
duce the redundant covering in a family of coverings so as to reduce redundant attributes, where each attribute segments the
universe into a covering of the universe and some coverings are redundant for computing lower and upper approximations
[6,29]. In order to discern them, we call them covering element reduction and covering set reduction, respectively. Essen-
tially, covering element reduction is designed for rule learning, while covering set reduction is developed for attribute
reduction.

As to covering element reduction, the current work does not consider decision attributes. In order to keep the discernibil-
ity of a covering approximation space, one requires computing the minimal description of objects. However, if an decision
attribute is considered, the objective of covering element reduction is to find the maximal description of each object, in the
meanwhile, the lower and upper approximations of decisions keep invariant. In this way, the derived decision rules would
have the greatest generalization power. We call this operation relative covering element reduction. This issue was studied by
Hu and Wang in 2009 [13]. However, this work did not systematically discuss the properties of relative covering element
reduction. It also did not show how to generate a covering from a given dataset. In addition, no empirical analysis was pre-
sented in their paper.

In this work, we will redefine the relative covering element reduction and analyze the difference between covering ele-
ment reduction and relative covering element reduction in detail. These different definitions form distinct directions of
applications. The objective of covering element reduction is to preserve the capability of the original covering in approximat-
ing any new information granule. However, relative covering element reduction is to derive a new compact covering such
that the new covering has the same capability in approximating the classification. Based on this observation, we design a
rule learning algorithm based on relative covering reduction. We compute the neighborhood of each sample to form a cov-
ering of the universe and the size of neighborhoods depends on the classification margin of samples [9]. And then we develop
an algorithm to reduce the elements of neighborhood covering and generate a set of rules from data. Finally we show some
numerical experiments to evaluate the proposed theoretic and algorithmic framework. In fact, Pawlak introduced a rule
learning algorithm through covering reduction in [22]. However, that algorithm was developed for nominal data. It does
work in numerical applications. Our algorithm can be used in more complex tasks.

The remainder of this paper is organized as follows. First, we will introduce the preliminaries of covering approximation
spaces and covering reduction in Section 2.Then we will show the definition of relative covering element reduction and dis-
cuss its properties in Section 3. In Section 4, we design a rule learning algorithm based neighborhood covering reduction. The
numerical experiments are presented in Section 5. Finally, conclusions and future work are given in Section 6.

2. Preliminaries of covering approximation spaces and covering reduction

In this section, we review the basic knowledge about covering rough sets and covering reduction.

Definition 1 [41]. Let U be a nonempty and finite set of objects, where U = {x1,x2, . . . ,xn} is called a universe of discourse.
C = {X1,X2, . . . ,Xk} is a family of nonempty subsets of U, and [k

i¼1Xi ¼ U. We say C is a covering of U, Xi is a covering element,
and the ordered pair hU,Ci is a covering approximation space.
In Pawlak’s approximation space, one condition is added to the family of subsets that Xi \ Xj = ; if i – j, thus C forms a
partition of the universe. However different subsets of objects usually overlap in real-world application. For example, if
we consider the extensions of the concepts we use everyday, we can find that most of the concepts have overlapped exten-
sions with other words, which tells us that the basis information granules we use in reasoning forms a covering of the objects
in the world, instead of a partition. Neighborhood relations, similarity relations and order relations are widely used. These
relations generate a covering of the universe, instead of a partition. Thus covering approximation spaces are more general
than Pawlak’s partition approximation spaces and can handle more complex tasks.
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Definition 2 [5]. Let hU,Ci be a covering approximation space, and x 2 U. The family
MdðxÞ ¼ fX 2 C : x 2 X ^ 8S 2 Cðx 2 S ^ S # X ) S ¼ XÞg
is called the minimal description of x.
The minimal description of x is the subset of covering elements containing x and these elements are not contained by

other covering elements. Thus these covering elements are the minimal ones associated with x.

Definition 3 ([43–45]). Let hU,Ci be a covering approximation space. X # U is an arbitrary subset of the universe. The
covering lower and upper approximations of X are defined as
CX ¼ [fXi 2 CjXi # Xg;
C1X ¼ CX [

[
fMdðxÞjx 2 X � CXg;

C2X ¼ [fXi 2 CjXi \ X – ;g;
C3X ¼ [fMdðxÞjx 2 Xg;
C4X ¼ CX [

[
fXi 2 CjXi \ ðX � CXÞ – ;g;
where CX is the covering lower approximation, and C1X;C2X;C3X and C4X are the first, the second, the third and the fourth
types of upper approximations, respectively [45].

In 2008, Hu, Yu and Xie introduced a point-wise neighborhood covering and gave the definition of neighborhood rough
sets based on neighborhood [18].

Definition 4. Let U be the universe of discourse, d(x) is the neighborhood of x, where d(x) = {xi : D(x,xi) 6 d}, D is a distance
function. Then N = {d(x1),d(x2), . . . ,d(xn)} forms a covering of U, we call hU,Ni a neighborhood covering approximation space.
Let X # U be a subset of the universe. The lower and upper approximations of X with respect to hU,Ni are defined as
NX ¼ fx 2 U : dðxÞ# Xg;
NX ¼ fx 2 U : dðxÞ \ X – ;g:
As the elements of a covering overlap, some of them may be redundant for keeping the discernibility of the covering
approximation space. In order to extract the essential information of the approximation space, it is expected to reduce
the redundant elements of the covering.
Definition 5 [44]. Let hU,Ci be a covering approximation space, X 2 C. If $X1, X2, . . . , Xl 2 C � {X}, such that X ¼ [l
i¼1Xi, then

we say X is a reducible element of C; otherwise, we say X is a irreducible. In addition, if each element of C is irreducible, we
say C is irreducible; otherwise, we say C is reducible.
Definition 6 [44]. Let hU,Ci be a covering approximation space, C0 is a covering derived from C by reducing the redundant
elements, and C0 is irreducible. We say C0 is a reduct of C, denoted by reduct(C).

In classification and regression learning, we are usually confronted with the task of approximating some concepts with a
covering. The above definitions are not involved with any decision attribute. Now we consider the problem of using cover-
ings to approximate a set of decision concepts.

Definition 7 [6]. Let C = {X1,X2, . . . ,Xk} be a covering of U. For "x 2 U, we set that Cx = \{Xj : Xj 2 C, x 2 Xj}. We say Cov(C) =
{Cx : x 2 U} is the induced covering of C.
Definition 8 [6]. Let C ¼ fC1;C2; . . . ;Cmg be a family of coverings of U. For "x 2 U, we set Cx ¼ \fCix : Cix 2 CovðCiÞ; x 2 Cixg.
Then CovðCÞ ¼ fCx : x 2 Ug is also a covering of U. We call it the induced covering of C.
Definition 9 [6]. Let C ¼ fC1;C2; . . . ;Cmg be a family of coverings of U, D be a decision attribute. U/D is a partition of U
induced by D. We call hU;C;Di a covering decision system. If "x 2 U, $Dj 2 U/D such that Cx # Dj, then decision system
hU;C;Di is consistent, denoted by CovðCÞ � U=D; otherwise, hU;C;Di is inconsistent.

In [6], the authors introduced a new concept of the induced covering of a covering. In fact, if we derive a covering C of the
universe according to the provided knowledge, then the knowledge has been used. We have no additional knowledge for
generating the induced covering Cov(C). The subsequent approximation operation should be processed on C, instead of
Cov(C).

Definition 10 [6]. Let hU;C;Di be a consistent covering decision system. For Ci 2 C, if CovðC� fCigÞ � U=D, we say Ci is
superfluous in C with respect to D; otherwise, Ci is said to be indispensable. If 8C 2 C is indispensable, we say C is
independent. Assume Q # C;CovðQÞ � U=D and Q is independent, we say Q is a relative reduct of C, denoted by reductDðCÞ.
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Assume that we have N features ffigN
i¼1 describe the objects. According to the information provided by each feature, we

can generate a covering of the universe. Then we can get N coverings C ¼ fCigN
i¼1. Among these attributes, some of them are

not related to the decision and irrelevant. Thus removing the coverings induced with these features does not have impact on
the approximation power of the system. The above definition shows us which attributes can be reduced. In classification
learning, we require removing not only the redundant attributes, but also the redundant elements in a covering in order
to obtain a concise description of classification rules.

Definition 11 [13]. Let hU,Ci be a covering approximation space. X # U and Xi 2 C. If there exists Xj 2 C, such that
Xi # Xj # X, we say Xi is a relatively reducible element of C with respect to X; otherwise, Xi is relatively irreducible. If all the
elements in C are relatively irreducible, we say C is relatively irreducible.

Comparing Definitions 5 and 11, we can see that in covering element reduction, the small covering elements are selected
and the large one is reduced. However, the large covering elements are preserved and the small one is removed in relative
covering element reduction. Why they are defined so. As we know, in covering element reduction, we should keep the finest
granularity of the covering approximation space for keeping the approximation power of the original system. In this case, the
small granules are preferred as they may give finer approximation of arbitrary subsets of the universe, whereas in the con-
text of relative covering element reduction, the large information granules, namely, the large covering elements used to
approximate decision classes are preferred because these granules have more powerful generalization ability, and the num-
ber of the derived rules would be less.

3. Relative neighborhood covering reduction

As to classification and regression learning, we are given a set of samples described with a n �m matrix [xij]n�m, where xij

is the j0th feature value of sample xi. In addition, each sample has an output yi. Considering a classification task, yi is the class
label of Sample xi. Formally, the data set can be written as hU,A,Di, where U = {x1, . . . ,xn}, A = {a1, . . . ,am} is the set of attri-
butes, D = {d} is the decision attribute.

No matter the attributes are nominal, numerical or fuzzy, we can define a distance function between samples. For exam-
ple, if the features are mixed with nominal and numerical features, the distance function can be defined as [31]
HEOMðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

wai
� d2

ai
ðxai

; yai
Þ

vuut ;
where m is the number of attributes, wai
is the weight of attribute ai; dai

ðx; yÞ is the distance between samples x and y with
respect to attribute ai, computed as
dai
ðx; yÞ ¼

1 if the attribute value of x or y is unknown;
overlapaðx; yÞ; if a is a nominal attribute;
rn diffaðx; yÞ; if a is a numerical attribute:

8><
>:
Here overlapðx; yÞ ¼ 0; if x ¼ y
1; otherwise

�
and rn diffaðx; yÞ ¼ jx�yj

maxa�mina
. Now according to the closeness between the objects in fea-

ture spaces, the objects can be granulated into different subsets. The samples which are close to each other form an infor-
mation granule, called a neighborhood granule, which is formulated as follows.

Definition 12. Given xi 2 U, the neighborhood NðxiÞ of xi in feature space is defined as
NðxiÞ ¼ fxj 2 U : Dðxi; xjÞ 6 dg;

where D is a distance function and d is a parameter dependent on xi.

Then the family of neighborhoods forms a covering of the universe. Note that d is a constant in [18,19]. In this work, the
sizes of neighborhoods of different samples are different and they are calculated according to the location of samples in fea-
ture spaces. Here we set d as the classification margin of samples [9].

Definition 13 [9]. Given hU,A,Di, x 2 U. NH(x) 2 U � {x} is the nearest sample of x within the same class of x, called the
nearest hit of x (Provided there is only one sample in the class of x, we set NH(x) = x). NM(x) is the nearest sample of x out of
the class of x, called the nearest miss of x. Then the classification margin of x is defined as
mðxÞ ¼ Dðx;NMðxÞÞ � Dðx;NHðxÞÞ:
The margin of a sample x reflects how much the features of x can be corrupted by noise before x is misclassified. It is

remarkable that m(x) may be less than zero. If so, this sample will be misclassified by the nearest neighbor rule. In this case
we set m(x) = 0, and NðxiÞ ¼ fxj : Dðxi; xjÞ ¼ 0g. If there are not two samples which belong to different classes and take the
same feature values, then the neighborhood of each sample consistently belongs to one of the decision classes.

Certainly, the size of neighborhood can be specified in other ways, which lead to different neighborhood coverings.
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The family of neighborhood N ¼ fNðx1Þ;Nðx2Þ; . . . ;NðxnÞg generates a point-wise covering of the universe. Now we call
hU;Ni a neighborhood covering approximation space and hU;N;Di a neighborhood covering decision system. The neighbor-
hood granules are used to approximate the decision regions.

Definition 14. Let hU;N;Di be a neighborhood covering decision system. X # U is an arbitrary subset of U. The lower and
upper approximations of X in hU;N;Di are defined as
N1X ¼ fx 2 U : NðxÞ# Xg; N2X ¼ [fNðxÞ : NðxÞ# Xg
N1X ¼ fx 2 U : NðxÞ \ X – ;g; N2X ¼ [fNðxÞ : NðxÞ \ X – ;g;
where N1X and N2X are called Type 1 and Type 2 covering lower approximations, respectively, and N1X and N2X are Type 1
and Type 2 covering upper approximations, respectively.

Comparing Definitions 3 and 14, we can see that N2X ¼ CX; N2X ¼ C2X. N1X and N1X are defined based on objects, in-
stead of covering elements, while all the definitions in Definition 3 are computed with covering elements. However,N1X
and N1X are the same as Definition 4. In order to compare and understand them, here we give the two types of definitions
together.

If the neighborhood covering N is also a partition of the universe, then N1X ¼ N2X and N1X ¼ N2X. However, usually N is
not a partition. In this case the two definitions are different.

Example 1. Let U = {x1,x2,x3,x4,x5}. f(x1,a) = 0.1, f(x2,a) = 0.2, f(x3,a) = 0.3, f(x4,a) = 0.4, f(x5,a) = 0.5. Assume the samples are
divided into two classes. d1 = {x1,x2,x3} and d2 = {x4,x5}. We compute the margins of samples. m(x1) = 0.2, m(x2) = 0.1,
m(x3) = 0, m(x4) = 0, m(x5) = 0.1. If the size of neighborhood is specified as its margin, we have Nðx1Þ ¼ fx1; x2; x3g; Nðx2Þ
¼ fx1; x2; x3g; Nðx3Þ ¼ fx3g; Nðx4Þ ¼ fx4g; Nðx5Þ ¼ fx4; x5g. N1d1 ¼ fx1; x2; x3g; N2d1 ¼ fx1; x2; x3g; N1d1 ¼ fx1; x2; x3g and
N2d1 ¼ fx1; x2; x3g. However, if we set d = 0.15, then Nðx1Þ ¼ fx1; x2g; Nðx2Þ ¼ fx1; x2; x3g; Nðx3Þ ¼ fx2; x3; x4g;
Nðx4Þ ¼ fx3; x4; x5g; Nðx5Þ ¼ fx4; x5g. N1d1 ¼ fx1; x2g; N2d1 ¼ fx1; x2; x3g; N1d1 ¼ fx1; x2; x3; x4g and N2d1 ¼ fx1; x2; x3; x4

; x5g.
Definition 15. Let hU; N;Di be a neighborhood covering decision system, U/D = {X1,X2, . . . ,X‘} be the partition of U induced
with D. The lower and upper approximations of decision D are defined as
N1D ¼ [‘i¼1N1Xi; N2D ¼ [‘i¼1N2Xi;

N1D ¼ [‘i¼1N1Xi; N2D ¼ [‘i¼1N2Xi:
It is easy to see that N1D ¼ U and N2D ¼ U. However, N1D # U and N2D # U.
Definition 16. Let hU;N;Di be a neighborhood covering decision system, U/D = {X1,X2, . . . ,X‘}. We say x 2 U is Type-1
consistent if there exists Xi 2 U/D, such that NðxÞ# Xi. We say x is Type-2 consistent if there exist x0 2 U and Xi 2 U/D, such
that x 2 Nðx0Þ and Nðx0Þ# Xi.
Definition 17. If all the samples in U are Type-1 consistent, we say that the neighborhood covering decision system is Type-
1 consistent; otherwise we say the system is Type-1 inconsistent. If all the samples in U are Type-2 consistent, we say that
the neighborhood covering decision system is Type-2 consistent; otherwise we say the system is Type-2 inconsistent.
Theorem 1. Let hU;N;Di be a neighborhood covering decision system.

1. N1D ¼ U iff hU;N;Di is Type-1 consistent.
2. N2D ¼ U iff hU;N;Di is Type-2 consistent.
Proof. If hU;N;Di is Type-1 consistent, "x 2 U, x is Type-1 consistent. There exists Xi 2 U/D, such that NðxÞ# Xi. Then
x 2 N1D. So we have N1D ¼ U. Analogically, we can also get the second term. h
Theorem 2. If N1D ¼ U, then N2D ¼ U holds. However, if N2D ¼ U, we cannot obtain N1D ¼ U.
Proof. If N1D ¼ U; 8x 2 U, there exists Xi 2 U/D, such that NðxÞ# Xi. Thus 8NðxÞ,there exists Xi 2 U/D, such that NðxÞ# Xi. In
this case, N2D ¼ U. However, if N2D ¼ U, there may be a sample xi, such that NðxiÞ is not consistent, but 9NðxjÞ; xi 2 NðxjÞ
and NðxjÞ is consistent. In this case, N1D – U. h

N1D ¼ U shows that the neighborhood of each sample is consistent. Thus, there exists Xi 2 U/D, such that NðxÞ# Xi.
Therefore N2D ¼ U. Whereas, when N2D ¼ U, there may be some inconsistent covering element NðxÞ. In this case
N1D – U.
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Example 2. Continue Example 1. Assume that U/D = {d1,d2}, d1 = {x1,x2,x3} and d2 = {x4,x5}. The size of neighborhood is
computed as the margin. Then we get N1d1 ¼ fx1; x2; x3g; N1d2 ¼ fx4; x5g; N2d1 ¼ fx1; x2; x3g; N2d2 ¼ fx4; x5g.

So N1D ¼ fx1; x2; x3; x4; x5g, and N2D ¼ fx1; x2; x3; x4; x5g. The decision system is both Type-2 consistent and Type-1
consistent.

However, if we set d = 0.15, then N1d1 ¼ fx1; x2g; N1d2 ¼ fx5g; N2d1 ¼ fx1; x2; x3g; N2d2 ¼ fx4; x5g. So N1D ¼ fx1; x2; x5g,
while N2D ¼ fx1; x2; x3; x4; x5g. The decision system is Type-2 consistent and Type-1 inconsistent.

A covering element is said to be consistent if all the objects in it belong to the same decision class; otherwise it is incon-
sistent. There maybe exist two classes of covering elements in Type 2 consistent neighborhood covering decision systems:
consistent and inconsistent covering elements. Nðx1Þ;Nðx2Þ and Nðx5Þ are consistent, while Nðx3Þ and Nðx4Þ are inconsistent.
However, all the covering elements are consistent if the decision system is type-1 consistent.

The fact is also reasonable that inconsistent covering elements exist in consistent covering decision systems. As to a cov-
ering decision system, there are some redundant covering elements. Although we can find a neighborhood granule for each
sample such that this sample is consistent in this granule, this sample may also exist in other inconsistent neighborhood
granules. We just require finding a granule which contains this sample and the granule is consistent.

Definition 18. Let hU;N;Di be a Type-1 or Type-2 consistent neighborhood covering decision system. Xi is one of the
decision classes. Nðx0Þ 2 N. If 9NðxÞ 2 N, such that Nðx0Þ � NðxÞ# Xi, we say Nðx0Þ is relatively consistent reducible with
respect to Xi; otherwise, we say Nðx0Þ is relatively consistent irreducible.
Definition 19. Let hU;N;Di be a Type-2 consistent neighborhood covering decision system. If NðxÞ 2 N is an inconsistent
covering element, we say NðxÞ is a relatively inconsistent reducible element.

There are two types of reducible elements: one is consistent and is contained by other consistent elements; the other is
the inconsistent elements.

Definition 20. Let hU;N;Di be a Type-1 consistent neighborhood covering decision system. If 8NðxÞ 2 N, there does not exist
Nðx0Þ 2 N, such that Nðx0Þ# NðxÞ# Xi, where Xi is an arbitrary decision class, then we say hU;N;Di is relatively irreducible;
otherwise, we say Nðx0Þ is relatively reducible.
Definition 21. Let hU;N;Di be a Type-1 consistent neighborhood covering decision system. N0 # N is a derived covering from
N by removing the relatively irreducible covering elements, and hU;N0;Di is relatively irreducible. Then we say that N0 is a D-
relative reduct of N, denoted by reductDðNÞ.
Theorem 3. Let hU;N;Di be a Type-1 consistent neighborhood covering decision system and reductDðNÞ be a D-relative reduct of
N. Then hU; reductDðNÞ;Di is also a Type-1 consistent covering decision system, and 8NðxÞ 2 N; 9Nðx0Þ 2 reductDðNÞ, such that
NðxÞ# Nðx0Þ.

The conclusions of Theorem 3 are straightforward because we just remove the redundant covering elements in the cov-
ering. Moreover, as to a Type-1 consistent covering decision system, all the elements are consistent; naturally the reduced
covering decision system is also Type-1 consistent.

After covering element reduction, there is no redundant covering element in the covering decision system. All the se-
lected covering elements are useful in approximating the decision classes. With a reduct of a covering decision system,
we can generate covering rules in the form.

If x0 2 NðxÞ, then x0 is assigned with the class of NðxÞ.

The theoretic framework of neighborhood covering reduction forms a mechanism for classification rule learning from
training samples. In next section, we will construct an algorithm for rule learning based on neighborhood covering reduction.

4. Covering reduction based rule learning algorithm

Rule learning is one of the most important tasks in machine learning and data mining, and it is also a main application
domain of rough set theory. In this section, we introduce a novel rule learning algorithm based on neighborhood covering
reduction.

Just like the problem of minimal attribute reduction, the search of minimal rule set is also NP-hard [2]. There are several
strategies to search the suboptimal rule set, such as forward search, backward search and genetic algorithm [21]. Here we
consider the forward search technique which start with an empty set of rules, and add new rules one by one. In each step, the
consistent neighborhood which covers most samples is selected and generates a piece of rule.

In addition, we can see that some neighborhoods just cover several samples in the experiments. If we include these rules,
the size of rule base is very large and the corresponding classification model would overfit the training samples. Thus a prun-
ing strategy is required. The pruning techniques used in other rule learning systems are applicable [8]. In this work, we add
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rules one by one. In the meanwhile, we also test the current set of rules with training and test samples. We record the clas-
sification accuracies. The rule set yielding the best classification performance is outputted. Certainly, other pruning tech-
niques can also adopted.

Algorithm NCR: Neighborhood covering reduction

Input:
Training set U_train = {(x1,d1),. . ., (xi,di),. . ., (xn ,dn)};
Test set U test ¼ x01; d

0
1

� �
; . . . ; ðx0i; d

0
iÞ; . . . ; x0m; d

0
m

� �� �
.

Output: rule set R.
1: compute the margins of training samples m(xi),i = 1, 2, . . .,n. If m(xi) < 0, set m(xi) = 0.
2: compute NðxiÞ of sample xi, i = 1, 2, . . . , n
3: N  fNðxiÞ; i ¼ 1; . . . ;ng; R  £;
4: compute the number of the samples covered by each covering element in N.
5: While (N – ;Þ
6: select the covering element NðxÞ covering the largest number of samples.
7: add a rule (x,m(x),y) into R, where y is the decision of x.
8: remove Nðx0Þ if Nðx0Þ# NðxÞ.
9: end
10: sort the rules according to the size of the covering elements in the descending order.
11: select the first h rules that producing the highest classification accuracy on training set or test set.

This algorithm greedily searches the largest neighborhood of samples in the forward search step and removes the rules
covering the least samples. In this way, we generate a small set of rules which can cover most of the samples.

It is worth pointing out that the above algorithm is developed according to Type 2 neighborhood rough sets, instead of
Type 1 neighborhood rough sets. However, if the size of neighborhood is set as the margin of samples, there is no inconsis-
tent neighborhood in the derived neighborhood covering decision system. So the rules produced with the above algorithm
are consistent.

According to the definition of margin of samples, we know the margins of samples far away from the classification border
are large. So their neighborhoods are also larger than the neighborhoods of samples close to classification border, as shown
in Fig. 1.

There are two classes of samples in this classification task, where ‘‘s’’ denotes d1, and ‘‘+’’ denotes d2. We consider sam-
ples x1, x2 and x3.
mðx1Þ ¼ Dðx1;nmðx1ÞÞ � Dðx1;nhðx1ÞÞ > 0;

mðx2Þ ¼ Dðx2;nmðx2ÞÞ � Dðx2;nhðx2ÞÞ � 0;

mðx3Þ ¼ Dðx3;nmðx3ÞÞ � Dðx3;nhðx3ÞÞ < 0:
Correspondingly, Nðx2Þ ¼ fx2g and Nðx3Þ ¼ fx3g. They are pruned in the pruning step, whereas Nðx1Þ covers many sam-
ples and it is selected and generates a classification rule that if D(x,x1) 6m(x1), then x 2 d1.

It is notable that the pruned rules do not cover all the samples. In addition, the test sample may be beyond the region of
the neighborhood of any sample. In this case, no rule matches the test sample. In this case, the test sample is classified to the
class of the nearest neighborhood.

As we employ a greedy strategy in searching rules, the rule learning algorithm is very efficient. First, we should compute
the margins of samples. The time complexity in this step are O(n � n). Then the time cost in computing the neighborhoods of
Fig. 1. Demonstration of neighborhood covering elements.



Fig. 2. Rule learning with spherical neighborhoods.
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samples is O(n). The complexities of covering reduction and rule pruning are O(n). Totally, the time complexity of algorithm
NCR is O(n � n).

5. Experimental analysis

In order to test the proposed algorithm, we conduct some numerical experiments. First we present a toy example with
artificial data, and then we give some real-world classification tasks.

We generate two binary classification tasks in 2-D feature spaces. The training samples are shown in Fig. 2(a) and
Fig. 3(a), respectively. We compute the margin of every sample with Euclidean distance and infinite norm based distance,
respectively. Then we can build a neighborhood of each sample. Euclidean distance produces spherical neighborhoods
and infinite norm based distance yields quadrate neighborhoods, as shown in Fig. 2(b) and Fig. 3(b), respectively.

Obviously, there are a lot of redundant neighborhoods in the original neighborhood covering. Removing the superfluous
covering elements leads to a compact and concise classification model. So we employ Algorithm NCR on the neighborhood
covering. The reduced coverings are presented in Fig. 2(c) and Fig. 3(c), respectively. As to these simple tasks, two pieces of
rules are produced for each task. The classification models are simple and easy to be understood.

Furthermore, we collect ten classification tasks from UCI machine learning repository. The description of these data sets is
given in Table 1.

Now we employ NCR algorithm on these data sets. First, we observe the relationship between the classification accuracies
and number of rules. We randomly divide the data into two subsets: 50% as training set and the others as test set. As we add
the rule one by one, we also compute the training accuracies and test accuracies. The results on iris, wine heart and pima
data sets are given in Fig. 4.

From Fig. 4, we see that both the training and test accuracies increase with the number of rules in the beginning. How-
ever, if the number of rules exceeds a certain value, the classification accuracies do not increase. On the contrary, the accu-
racies keep invariant, even decrease, which shows the classification models overfit the training samples if too many rules are
used. Therefore, a pruning technique is useful for neighborhood covering reduction based rule learning.

The 10-fold cross validation accuracies based on nearest neighbor rule (NN), neighborhood classifier (NEC) [19], Learning
Vector Quantization (LVQ) [28] and linear support vector machine (LSVM) are presented in Table 2. Moreover, we also try
some decision rule learning algorithms, including CART, C4.5 and Jripper, the number of rules and classification performance
are shown in Table 2.
Fig. 3. Rule learning with quadrate neighborhoods.



Table 1
Description of these data sets.

Features Class Instances

wine 14 3 178
iris 5 3 150
wdbc 31 2 569
pima 9 2 768
thyroid 6 3 215
german 20 2 1000
yeast 8 2 1484
heart 14 2 270
sick 30 2 2800
segment 18 7 2310
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Fig. 4. Variation of classification performance with the number of decision rules.
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Table 3 presents the classification results based on neighborhood covering reduction, where spherical and quadrate
neighborhoods are considered. The classification accuracies and number of rules pruned on training sets and test sets are
recorded.

Comparing Table 3 with Table 2, we see that neighborhood covering reduction based rule sets are better than or as good
as the classical classification algorithms. If we consider the spherical neighborhood and the rule set is pruned based on test
samples, the classification performance of reduced rule sets even better than linear support vector machine. This result
shows that if the rules are elaborately tuned they are powerful in classification decision.

Unfortunately, we find the numbers of rules produced with neighborhood covering reduction are much more than those
obtained with CART, C4.5 and Jripper. We observe some derived rules and find most of them can be merged by increase the
size of neighborhood. We do not discuss this problem in this work.
Table 2
Classification performance of some classical classification algorithms.

NEC LVQ 1-NN LSVM CART C4.5 Jripper

Acc. Acc. Acc. Acc. Acc. N Acc. N Acc. N

wine 96.6 ± 2.9 96.0 ± 2.8 94.9 ± 5.0 98.9 ± 2.3 88.2 ± 6.2 10 91.6 ± 7.3 5 93.8 ± 8.1 3
iris 96.0 ± 4.7 96.6 ± 5.1 96.0 ± 5.6 97.3 ± 4.6 95.3 ± 5.9 5 96.0 ± 5.0 5 94.0 ± 7.1 4
wdbc 94.6 ± 2.5 95.4 ± 3.6 95.4 ± 3.3 97.7 ± 2.5 93.1 ± 2.4 9 93.3 ± 3.8 13 94.3 ± 2.0 5
pima 76.0 ± 3.0 73.3 ± 4.2 70.8 ± 3.7 76.7 ± 3.6 74.4 ± 5.4 13 75.2 ± 7.4 20 75.0 ± 5.3 3
thyroid 87.9 ± 7.0 89..7 ± 6.6 95.3 ± 3.4 89.8 ± 7.9 90.1 ± 4.7 4 91.6 ± 3.6 9 92.5 ± 7.0 5
german 73.5 ± 3.4 72.3 ± 3.5 68.8 ± 3.2 73.7 ± 4.7 75.0 ± 3.2 10 71.7 ± 3.1 90 74.2 ± 2.5 3
yeast 73.8 ± 3.0 75.5 ± 3.4 70.5 ± 5.7 73.9 ± 3.6 76.1 ± 4.2 5 76.0 ± 3.9 44 75.0 ± 4.3 5
heart 80.0 ± 5.6 82.6 ± 6.8 76.7 ± 9.4 83.3 ± 5.3 78.5 ± 5.2 16 76.6 ± 4.8 18 78.8 ± 5.1 4
sick 93.9 ± 1.1 93.8 ± 3.2 95.5 ± 0.1 93.9 ± 12.6 98.5 ± 1.2 24 98.6 ± 1.3 15 98.2 ± 1.7 7
segment 90.4 ± 5.5 82.5 ± 2.6 96.5 ± 2.8 90.7 ± 3.8 96.1 ± 1.8 46 97.1 ± 2.0 39 95.4 ± 1.9 21

Ave. 86.3 85.8 86.0 87.6 86.5 14.2 86.8 25.8 87.1 6



Table 3
Classification performance of neighborhood covering reduction based classification algorithms.

Spherical Quadrate

Test Training Test Training

Accuracy Rules Accuracy Rules Accuracy Rules Accuracy Rules

wine 97.6 ± 4.3 9.6 96.0 ± 4.8 11.7 95.4 ± 3.8 10.7 93.2 ± 3. 7 12.7
iris 99.3 ± 2.1 5.4 97.3 ± 4.7 7.3 100.0 ± 0.0 6.0 100.0 ± 0.0 8.2
wdbc 96.5 ± 3.7 23.7 94.6 ± 4.3 24.1 92.6 ± 2.1 15.0 92.3 ± 2.0 21.7
pima 75.3 ± 3.6 11.8 72.1 ± 3.7 15.2 75.8 ± 2.3 11.4 74.0 ± 2.1 13.9
thyroid 92.5 ± 6.3 9.6 91.2 ± 6.0 11 90.2 ± 5.1 7.2 89.8 ± 5.3 9
german 75.5 ± 9.4 4 67.9 ± 2.0 17.6 73.5 ± 3.0 61.1 72.3 ± 2.9 92.4
yeast 77.0 ± 3.4 52.3 75.6 ± 3.8 71.9 78.3 ± 1.2 55.5 76.7 ± 1.3 71.6
heart 86.3 ± 3.9 7.8 84.4 ± 4.6 9.4 75.6 ± 6.6 15 75.6 ± 6. 6 18.4
sick 95.2 ± 7.8 87.5 93.6 ± 5.5 97.6 95.0 ± 6.4 177.7 94. 7 ± 6.7 176.8
segment 91.7 ± 4.2 89.6 91.5 ± 4.3 118.5 95.2 ± 8.5 128.3 95. 0 ± 1.1 131

Ave. 88.7 30.1 86.4 38.4 87.2 48.5 86.4 55.6
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Considering the classification performance, we think rule learning based on neighborhood covering reduction is promis-
ing and efficient.
6. Conclusions and future work

Although covering reduction was widely discussed in recent years, no successful application has been reported so far. We
discuss the problem of relative covering reduction and study the difference between covering reduction and relative cover-
ing reduction. It is pointed out that covering reduction tries to select the small covering elements, whereas relative covering
reduction selects the large consistent covering elements. Therefore, relative covering reduction can build a compact and sim-
ple rule set for classification, while covering reduction can keep the finest approximation of arbitrary concepts. So covering
reduction is not applicable to rule learning for classification because the derived rule set would be very complex and overfit
training samples.

Moreover, we introduce the concept of classification margin to compute the size of neighborhood of each sample, thus we
generate a neighborhood covering of the universe. We define two classes of neighborhood lower and upper approximations.
We find there are two types of reducible covering elements. With relative neighborhood covering reduction, we select the
large neighborhoods and remove the small neighborhoods.

We test the classification performance of the rule learning algorithm. The experimental results show that the rule learn-
ing algorithm NCR is better than or as good as some existing classification algorithms, including NEC, NN, LVQ, LSVM, CART,
C4.5 and Jripper.

As we mention in the experimental section, the rules derived with NCR sometimes are much more than C4.5 and other
techniques. In fact, most of the derived rules can be merged. Thus the number of rules will be greatly reduced. Moreover, we
do not consider reducing redundant attributes in this work. However, CART and C4.5 implicitly remove irrelevant features in
rule learning. We will combine feature selection and covering element reduction for rule learning in the future.
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