Fair Resource Allocation for Data-Intensive Computing in the Cloud
Shanjiang Tang, Bu-Sung Lee, Bingsheng He

Abstract—To address the computing challenge of 'big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource allocation mechanism called Long-Term Resource Fairness (LTRF) for such computing. For hierarchical resource allocation, we propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than existing fair schedulers of YARN.

1 INTRODUCTION

Nowadays, we have entered the era of 'big data', where the data is collected at unprecedented scale in many application areas, including e-commerce [1], social network [18], and computational biology [43]. Large-scale data processing is thus needed in analyzing and mining of massive data. In recent years, a number of large-scale data-intensive computing frameworks (e.g., MapReduce [2], Spark [13], Dryad [6], HIVE [25]) have been developed for different applications/data (e.g., batch/iterative applications, graph/streaming data). Recently, YARN [3] has emerged as a popular distributed resource management system that enables a number of these data-intensive computing frameworks (e.g., MapReduce [2], Spark [13], HIVE [25]) to efficiently share a cluster.

Moreover, cloud computing has emerged as a popular platform for users to compute their large-scale data applications, attracting from its merits such as flexibility, elasticity, and cost efficiency. Resource utilization is a key design issue in the cloud for both users and providers [47]. However, the fact is that the resource utilization of current data-intensive computing systems is far from ideal. Delimitrou et al. [48] had an analysis of Twitter production cluster over one month. However, they showed that the majority of servers (e.g., 80% servers) are below 20% utilization.

Resource sharing is a classical and effective approach for high resource utilization [23]. It is based on the observations that 1). different users often have different resource demands; 2). even for an individual user, her demand is changing over time. Resource sharing can thereby achieve a better utilization than the non-sharing case by enabling overloaded users to utilize unused resources from underloaded users. In the cloud environment, we can establish a multi-tenant computing system by importing all computing instances rented by each user. The computing resources of the system can be managed and shared between users in their analytical data computation with existing resource management systems such as YARN [3].

Fairness is an important system issue in resource sharing. Only when the fairness is guaranteed for users, the resource sharing can be possible among different users. One of the most popular fair allocation policy is (weighted) max-min fairness [23], which maximizes the minimum resource allocation obtained by a user in a shared computing system. It has been used in YARN [3] as well as other popular resource sharing systems such as Mesos [10]. Unfortunately, we observe that the fair policies implemented in these systems are memoryless, i.e., allocating resources fairly at instant time without considering history information. We refer these policies with MemoryLess Resource Fairness (MLRF). MLRF is not suitable for cloud computing system due to the following problems:

Cost-inefficient Workload Submission Problem. For MLRF, there is an implicit assumption that all users are unselfish and honest towards their requested resource demands, which is however often not true in practice. It can cause cost-inefficient workload submission problem with MLRF in the sharing environment. Consider two users A and B sharing a system for example. Let D_A and D_B be the true workload demand for A and B at time t_0, respectively. Assume that D_A is less than its share 1 while D_B is larger than its share. When it is in the exclusively non-sharing computing environment, there is no incentive/benefit for user A to run dirty (i.e., cost-inefficient) tasks for possessing all her unused resources since there is no resource contention for her in this case at any time. However, when it comes to the sharing case, if A yields her unused resources to B at t_0, next at time t_1 when A has many tasks to compute, it would make her be pending/waiting for possessed resources to be released from B. Assuming A is a selfish user, in order to avoid that in the sharing case, it

1. By default, we refer to the current share at the designated time (e.g., t_0), rather than the total share accumulated over time.

is feasible for A to possess all of her unused resources by submitting a number of small-size dirty (i.e., cost-inefficient) tasks at t_0 until the true resource demand of A become larger than or equal to her share in next computation stages. If all underloaded users in the sharing system behave like A, it then causes the cost-inefficient problem for running workloads and breaking the sharing incentive (See definition in Section 3) property at the same time.

Strategy-Proofness Problem. In a fairly shared system, it is important to ensure that no users can get any benefits by lying (See Strategy-proofness in Section 3). We argue that MLRF cannot satisfy this property. Consider a Hadoop system consisting of three users A, B, and C. Assume A and C are honest users while B not. It could happen at a time that both the true map slots demands of A and B are less than their own shares while C’s true map slots demand exceeds its share. In that case, A yields her unused map slots to others honestly. But B can cheat the Hadoop system by falsely reporting her map slots demand (say, e.g., far larger than her share) and put some computing load of her reduce tasks in the map tasks, which can be achieved by modifying the application code [23]. Then B can compete with C for unused map slots from A, benefiting B for having more workloads computed and hence violating strategy-proofness. Moreover, it will break the sharing incentive property as well if all other users do the same thing like her.

Resource-as-you-contributed Unfairness Problem. In the shared cloud system, we should ensure that the total resources received by each user are proportional to her resource contribution (See resource-as-you-contributed Fairness in Section 3). Due to the varied resource demands (e.g., workflows) for a user at different time, MLRF fails at this point. Consider two users A and B. At time t_0, it could happen that the demand D_A is less than its share and hence its extra unused resource will be possessed by user B (i.e., lend to B) according to the work conserving property of MLRF. Next at time t_1, assume that user A’s demand D_A becomes larger than its share. With MLRF, however, A can only use her current share (i.e., cannot get lent resources at t_0 back from B), if D_B is larger than its share, due to the memoryless feature. It is unfair for A to get the amount of resources that she should have obtained from a long-term view.

In this paper, we propose Long-Term Resource Fairness (LTRF) and show that it can solve the aforementioned problems. We start with the single-level resource allocation, and next extend it to hierarchical resource allocation [24]. For the single-level resource allocation, we demonstrate that LRTF has good properties that are important for fair resource allocation on the shared cloud system. Five such properties are sharing incentive, cost-efficient workload incentive, resource-as-you-contributed fairness, strategy-proofness and Pareto Efficiency. LTRF provides incentives for users to submit meaningful workloads and share resources by ensuring that no user is better off in the exclusively non-sharing computing system than in the sharing case. Moreover, LTRF can guarantee the amount of resources a user should receive in terms of the amount of resources she contributed, in the case that her resource demand varies over time. In addition, LTRF is strategy-proof, as it can make sure that a user cannot get more resources by lying about her resource demand.

We have extended LTRF to support hierarchical resource allocation by considering the organizational priorities in resource allocations. We show that the combination of hierarchical and long-term resource allocation brings new challenges that do not exist in the single-level long-term resource allocation. A naive extension of LTRF can lead to the starvation. To solve this problem, we propose a starvation-aware Hierarchical LTRF (H-LTRF) based on the timeout technique.

We have implemented LTRF and H-LTRF in YARN [3], by developing a long-term fair scheduler LTYARN. The experiments show that, 1). LTRF can guarantee Service-Level Agreement(SLA) via minimizing the sharing loss and bringing much sharing benefit for each user (See Fairness definition in Section 4.2), whereas MLRF not; 2). the shared methods using either LTRF and MLRF can possibly get better performance than non-shared one, or at least as fast in the shared system as they do in the non-shared partitioning case. The performance finding is consistent with previous work such as Mesos [10]; 3). H-LTRF can address the possible starvation problem in hierarchical resource allocation.

This paper is organized as follows. Section 2 gives the background and motivation. Section 3 presents several cloud-oriented resource allocation properties. Section 4 models the problem for single-resource allocation and defines the notion of fairness for cloud computing. Section 5 gives the design and principle of fair policies. Section 6 presents the implementation details of LTYARN. Section 7 evaluates the fairness and performance of LTYARN experimentally. Section 8 reviews the related work. Finally, we conclude the paper in Section 9.

2 BACKGROUND AND MOTIVATION

In this section, we start with the background of data intensive computing in the cloud and present our work settings. Next, we give an introduction of resource allocation in YARN.

2.1 Data-Intensive Computation in the Cloud

To enable the query and analysis for such a large volume of data, a number of large-scale data management and parallel computing systems have been designed and built, including Hadoop [15], Hive [25], Dryad [6], and Spark [13]. On the other hand, there is a trend for users to take cloud computing as a computing infrastructure for data-intensive computing due to its capacity of elastic computing and storage resources [46], and pay-as-you-go pattern for rented cloud resources.

Running in the cloud, applications need to have a high utilization (and in turn the high cost efficiency) for rented cloud resources. Otherwise, the cloud resources are idle, resulting in a waste of money as well as resources [5]. In practice, it is most likely that the resource demand of a single user’s application is changing over time, implying that it is hard to keep the high resource utilization all the time. More effective resource sharing is critical for improving the resource utilization in the cloud.

In this paper, let’s consider a cloud-based computing system shared by n users, where user i has a resource contribution of k_i to the pool of cloud resources. To enable resource
sharing sustainable between users in the long run, we should guarantee the proportional relationship between the amount of total resources a user used over a period of time and the amount of resources contributed by the user to the shared cloud (i.e., resource-as-you-contributed fairness). Our aim thus turns to explore a fair resource allocation policy that can meet all the aforementioned good properties listed in Section 3.

2.2 Resource Management in YARN

YARN, as the next generation of Hadoop (i.e., Hadoop MRv2), has evolved to be a large-scale data operating platform and cluster resource management system. There is a new architecture for YARN, which separates the resource management from the computation model. Such a separation enables YARN to support a number of diverse data-intensive computing frameworks including Dryad [6], Giraph, Hoya, Spark [13], Storm [12] and Tez. In YARN’s architecture, there is a global master named ResourceManager(RM) and a set of per-node slaves called NodeManagers(NM), which forms a generic system for managing applications in a distributed manner. The RM is responsible for tracking and arbitrating resources among applications. In contrast, the NM has responsibility for launching tasks and monitoring the resource usage per slave node. Moreover, there is another component called ApplicationMaster(AM), which is a framework-specific entity. It is responsible for negotiating resources from the RM and working with the NM to execute and monitor the progress of tasks. Particularly, all resources of YARN are requested in the form of ‘container’, which is a logical bundle of resources (e.g., <1 CPUs, 2G memory>).

As a multi-tenant platform, YARN organizes users’ submitted applications into queues and share resources between these queues. Users can set their own queues in a configuration file provided by YARN. When all users’ queues are configured at the same level, the cluster resources will then be allocated at one level, which we call the single-level resource allocation. Moreover, to reflect the hierarchical tree structure for organizations of users in practice, YARN also supports hierarchical queues of tree topology. Each queue can represent an organization or a user. In the tree topology, there is a root node called Root Queue. It distributes the resources of the whole system to the intermediate nodes called Parent Queues. Each parent queue further re-distributes resources into its sub-queues (parent queues or leaf queues) recursively until to the bottom nodes called Leaf Queues. Finally, users’ submitted applications within the same leaf queue share the resources. We call this allocation as hierarchical resource allocation.

There is a Fair Scheduler [22] inside YARN, which can support both single-level and hierarchical resource allocations. Moreover, both single-resource and multi-resource allocations are also supported. For the single-resource allocation, current version of YARN adopts the max-min fair policy and focuses only on the memory resources. With regard to the multi-resource allocation, it takes the Dominant Resource Fairness (DRF) [23] and considers both CPU and memory resources.

In our paper, we focus on the single-resource allocation for YARN by considering both single-level and hierarchical resource allocation in cloud computing. We remain the consideration for multi-resource allocation as future work.

3 Cloud-Oriented Resource Allocation Properties

We present a set of desirable properties for cloud computing. Based on these properties, we design our fair allocation policies for YARN. We have found the following five important properties:

- **Sharing Incentive**: Each user should be better off sharing the resources with others, than exclusively using the resources individually. Consider a cloud system equally shared by \(n \) users over \(t \) period time. Then each user should get at least \(t \times \frac{1}{n} \) resources in the shared system.

- **Cost-Efficient Workload Incentive**: Resources in the cloud are priced (i.e., not free). In a shared cloud system, we should encourage users to submit workloads that generate positive utility to them (i.e., cost-efficient workload) for cost efficiency and avoid those spam workloads with no positive utility (i.e., cost-inefficient workload). That is, a user should be better off submitting cost-efficient workload and yielding unused resources to others when not needed. Otherwise, she may be selfish and possesses all unneeded resources under her share by submitting cost-inefficient tasks in a shared computing environment.

- **Resource-as-you-contributed Fairness**: In the cloud, assume that each user contributes a certain number of machines (resources) to its common pool of machines (resources). Then, the accumulated resource that each user used received over time should be in proportion to her contribution in the shared environment. This property is important as it is a Service-Level Agreement (SLA) guarantee for users.

- **Strategy-Proofness**: Users should not be able to get benefits by lying about their resource demands. This property is compatible with sharing incentive and resource-as-you-contributed fairness, since no user can obtain more resources by lying.

- **Pareto Efficiency**: In a shared resource environment, it is impossible for a user to get more resources without decreasing the resource of at least one user. This property can ensure the system resource utilization to be maximized.

Although this paper is focused on YARN, it is worth mentioning that our methodology can be applied to other resource management systems such as Mesos [10].

4 System Model and Fairness Definition

In this section, we first model the single-resource allocation for YARN in cloud environment. Next, we give the definition of fairness, which is used to assess fair policies in the following sections.

4.1 System Model

This paper considers the single-resource allocation fairness (e.g., memory) for YARN in the most commonly used homogeneous environment [3]. Let \(M = \{1,...,m\} \) be the set of machines (or instances) in the shared computing system. For each machine, we assume the amount of resources (e.g., memory) is \(R_i \). Thus, the total resource capacity \(R \) of the
system is $R = \sum_{i=1}^{n} R_i$. Let $N = \{1...n\}$ be the set of users in the shared computing systems. Assume that the resource contributions (i.e., shared weights) for n users are $W = \{w_1...w_n\}$. According to the practical needs of resource allocation, these users can be grouped into multiple queues of either single-level resource allocation structure or hierarchical resource allocation structure in YARN.

Without loss of generality, for example, there is a cloud system consisting of 100 instances of t2.medium type on the cloud, contributed by four users A, B, C and D with diverse data-intensive workloads (e.g., MapReduce, Tez, HIVE, and Spark) equally. In that case, we can establish a shared computing system with YARN. According to practical needs, the four users can be organized either into a single group for single-level resource allocation (e.g., Figure 1(a)) or multiple groups for hierarchical resource allocation (e.g., Figure 1(b)).

In our work below, we focus on the fairness for these two types of resource allocation structures for n users, namely, single-level resource allocation (Section 5.1) and hierarchical resource allocation (Section 5.2).

4.2 Fairness Definition

We consider the fairness from the resource allocation perspective. In a shared cloud environment, ideally, every user wants to get more resources or at least the same amount of resources in a shared computing system than the ones of exclusively using her partition of the system. We call it fair for a user (i.e., sharing benefit) when that can be achieved. In contrast, due to the resource contention in the shared system, it is also possible for the total resources a user received are less than that without sharing, which we call unfair (i.e., sharing loss). To ensure resource-as-you-contributed fairness and the maximization of sharing incentive property in the shared system, it is important to minimize sharing loss firstly and then maximize sharing benefit.

In the remainder of this paper, we refer to the total resources as accumulated resources along the time. Let $g_i(t)$ be the currently allocated resources for the i^{th} user at time t. Let $f_i(t)$ denote the accumulated resources for the i^{th} user at time t. Thus,

$$f_i(t) = \int_0^t g_i(t) \, dt.$$ \hspace{1cm} (1)

Let $d_i(t)$ and $S_i(t)$ denote the current demand and current resource share for the i^{th} user at time t, respectively. Given the total resource capacity R of the system and the shared weight w_i for the i^{th} user, there is

$$S_i(t) = R \cdot w_i / \sum_{k=1}^{n} w_k.$$ \hspace{1cm} (2)

The fairness degree $\rho_i(t)$ for the i^{th} user at time t is defined as the normalization result of the amount of resources a user obtained in a shared environment with respect to the non-shared environment, i.e.,

$$\rho_i(t) = \frac{\text{AllocationResultWithSharing}}{\text{AllocationResultWithoutSharing}} = \frac{\int_0^t g_i(t) \, dt}{\int_0^t \min\{d_i(t), S_i(t)\} \, dt}.$$ \hspace{1cm} (3)

$\rho_i(t) \geq 1$ implies the absolute resource fairness for the i^{th} user at time t. In contrast, $\rho_i(t) < 1$ indicates unfair. We can easily see that for a user i in a non-shared partition of the system, it always holds $\rho_i(t) = 1$, since it has $g_i(t) = \min\{d_i(t), S_i(t)\}$ at any time t in this scenario. To measure how much better or worse for sharing with a fair policy than without sharing (i.e., $\rho_i(t) - 1$), we propose two concepts sharing benefit degree and sharing loss degree to quantify it, respectively. Let $\Psi(t)$ be sharing benefit degree, as a sum of all $(\rho_i(t) - 1)$ subject to $\rho_i(t) \geq 1$, i.e.,

$$\Psi(t) = \sum_{i=1}^{n} \max\{\rho_i(t) - 1, 0\}.$$ \hspace{1cm} (4)

and let $\Omega(t)$ denote sharing loss degree, as a sum of all $(\rho_i(t) - 1)$ subject to $\rho_i(t) < 1$, i.e.,

$$\Omega(t) = \sum_{i=1}^{n} \min\{\rho_i(t) - 1, 0\}.$$ \hspace{1cm} (5)

Thereby, it always holds that $\Psi(t) \geq 0 \geq \Omega(t)$. Moreover, we see that in a non-shared partition of the computing system, it always holds $\Psi(t) = \Omega(t) = 0$, indicating that there are neither sharing benefit nor sharing loss. In contrast, in a shared cloud computing system, either of them could be nonzero. For a good fair policy, it should be able to maximize $\Omega(t)$ first (e.g., $\Omega(t) \rightarrow 0$) and next try to maximize $\Psi(t)$ as much as possible. Finally, we can use this two metrics to compare the fairness among different policies.

5 Fair Policy Design and Principle for YARN

In this section, we give our design and principle of fair policies for YARN under cloud computing environment. Both single-level resource allocation and hierarchical resource allocation are considered.

5.1 Single-level Resource Allocation

For single-level resource allocation, we first give a motivation example to show that MemoryLess Resource Fairness (MLRF) is not suitable for cloud computing system. Then we propose Long-Term Resource Fairness (LTFR), a cloud-oriented allocation policy to address it and meet the desired properties in the previous section.

<table>
<thead>
<tr>
<th>User A</th>
<th>Allocation Result</th>
<th>Preempt</th>
<th>User B</th>
<th>Allocation Result</th>
<th>Preempt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>New</td>
<td>Rem</td>
<td>Total</td>
<td>Current</td>
<td>Total</td>
</tr>
<tr>
<td>T_1</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>T_2</td>
<td>40</td>
<td>0</td>
<td>40</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>T_3</td>
<td>80</td>
<td>0</td>
<td>80</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>T_4</td>
<td>60</td>
<td>30</td>
<td>90</td>
<td>90</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Allocation results based on MLRF. Total Demand refers to the sum of the new demand and accumulated remaining (denoted by Rem) demand in previous time.

<table>
<thead>
<tr>
<th>User A</th>
<th>Allocation Result</th>
<th>Preempt</th>
<th>User B</th>
<th>Allocation Result</th>
<th>Preempt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>New</td>
<td>Rem</td>
<td>Total</td>
<td>Current</td>
<td>Total</td>
</tr>
<tr>
<td>T_1</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>T_2</td>
<td>40</td>
<td>0</td>
<td>40</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>T_3</td>
<td>80</td>
<td>0</td>
<td>80</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>T_4</td>
<td>60</td>
<td>30</td>
<td>90</td>
<td>90</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) Allocation results based on LTRF.

TABLE 1: A comparison example of MemoryLess Resource Fairness (MLRF) and Long-Term Resource Fairness (LTRF) in a shared computing system consisting of 100 computing resources for two users A and B.

Motivation Example. Consider a shared computing system consisting of 100 resources (e.g., 100GB RAM) and two
users A and B with equal share of 50GB each. Without loss of generality, let’s consider a simple case for the ease of clarification by assuming that the resource demand and execution time of all tasks are 1GB and 1 time unit (e.g., 1 min), respectively. But it is worthy mentioning that in our real implementation of LTRF (Section 6.2), we do not have any assumption about the execution time and submission time of tasks. As illustrated in Table 1, assume that the new requested demands at time \(t_1, t_2, t_3, t_4 \) for user A are 20, 40, 80, 60, and for user B are 100, 60, 50, 50, respectively. With MLRF, we see in Table 1(a) that, at \(t_1 \), the total demand and allocation for A are both 20. It lends 30 unused resources to B and thus 80 allocations for B. The scenario is similar at \(t_2 \). Next at \(t_3 \) and \(t_4 \), the total demand for A becomes 80 and 90, bigger than its share of 50. However, it can only get 50 allocations based on MLRF, being unfair for A since it makes the total allocations for A and B become 160 (= 20 + 40 + 50 + 50) and 240 (= 80 + 60 + 50 + 50) at time \(t_4 \), respectively. Instead, if we adopt LTRF, as shown in Table 1(b), the total allocations for A and B at \(t_4 \) will finally be the same (e.g., 200), being fair for A and B.

LTRF Scheduling Algorithm. Algorithm 1 shows pseudo-code for LTRF scheduling. It considers the fairness of the total amount of allocated resource consumed by each user, instead of currently allocated resources. The core idea is based on the ‘loan(lending) agreement’ [7] with free interest. That is, a user will yield her unused resources to others as a lend manner at a time. When she needs at a later time, she should get the resources back from others that she yielded before (i.e., return manner). In our previous two-user example with LTRF in Table 1(b), user A first lends her unused resources of 30, 10 to user B at time \(t_1 \) and \(t_2 \), respectively. However, at \(t_3 \) and \(t_4 \), she has a large demand and then collects all 40 extra resources back from B that she lent before, making fair between A and B.

Algorithm 1 LTRF pseudo-code.

1: \(R \) total resources available in the system.
2: \(R := (R_1, \ldots, R_k) \); currently allocated resources. \(R_i \) denotes the currently allocated resources for user \(i \).
3: \(U := (u_1, \ldots, u_n) \); total used resources, initially 0. \(u_i \) denotes the total resource consumed by user \(i \).
4: \(W := (w_1, \ldots, w_n) \); weighted share. \(w_i \) denotes the weight for user \(i \).
5: while there are pending tasks do
6: Choose user \(i \) with the smallest total weighted resources of \(u_i / w_i \).
7: \(d_i := \) the next task resource demand for user \(i \).
8: if \(R_i + d_i \leq R \) then
9: \(R_i := R_i + d_i \). \(\Rightarrow \) Update currently allocated resources.
10: Update the total resource usage \(u_i \) for user \(i \).
11: Allocate resource to user \(i \).
12: \(\Rightarrow \) The system is fully utilized.
13: Wait until there is a released resource \(r_i \), from user \(i \).
14: \(R_i := R_i - r_i \). \(\Rightarrow \) Update currently allocated resources

Finally, we make a property analysis in Appendix B of the supplemental material, showing that LTRF satisfies all the desired properties in Section 3.

5.2 Hierarchical Resource Allocation

In previous sections, we have considered the single-level (i.e., user-level) resource allocation for LTRF. It allocates the unused resources of a user always to the person with lowest

1. For the allocation in Figure 1(b), the allocation starts at the root of the tree, and traverses down by picking the ‘demanding’ child (i.e., the node with pending tasks) that has the lowest total amount of allocated resources, and allocates resources to it. When there is a tie, we randomly choose a node to allocate.

2. Affinity users have higher priority to get unused resources than non-affinity users.
Fig. 2: The resource allocation results with the naive approach for four users A, B, C and D in the hierarchy of Figure 1(b). At the beginning, the resource demands for A, B, C and D are 200, 10, 50 and 60, respectively. Next, the new demands arrive at time 27th time unit, that are 20, 60, 40 and 80 for A, B, C and D, respectively.

Starvation. We show that the naive approach can lead to starvation problem for users with the lowest total amount of allocated resource due to the collective resource allocation. Let us consider an example with the hierarchy given in Figure 1(b). Assume that there are 12 resource units for the system and four demanding leaf nodes (users) A, B, C and D at the beginning with the resource demands of 200, 10, 50 and 60, respectively. For simplicity, let’s assume that each task consumes one resource unit and lasts one time unit (e.g., 1 min).

As the allocation results illustrated in Figure 2, the algorithm starts by allocating 3 resource units to each of A, B, C and D until the 3rd time unit. At the 3rd time unit, B only needs 1 resource unit. A, C and D get 5, 3 and 3 resource units, respectively. From the 4th to 16th time unit, the allocations occur among A, C and D with 6, 3 and 3, respectively. At the 16th time unit, C needs only 2 resource units and the allocation will be 6, 2 and 4 for A, C and D, respectively. Thereafter, the allocation will happen between A, D each with the allocated resources of 6 until D completes all tasks. After that, there is only one demanding user A and the whole resources will be given to A until the 27th time unit. At the 27th time unit, all tasks have been allocated. The total amount of allocated resources for users A, B, C and D are 200, 10, 50 and 60, respectively. In that case, the total amount of allocated resources for G1 and G2 are 210, 110, respectively. At 28th time unit, let’s assume that there are new resource demands of 20, 60, 40 and 80 for leaf nodes A, B, C and D, respectively. Although leaf node B is the user with the lowest total amount of allocated resource, it will be starved for a long time (e.g., at least \((210 - 110)/12 = 8\) minutes) before being allocated due to its sibling node A who has consumed too many resources and in turn makes G1 much larger than G2 (i.e., 210 – 110 = 100 resource units).

5.2.2 **Starvation-aware Hierarchical LTRF (H-LTRF)**

We propose a starvation-aware Hierarchical LTRF algorithm, namely H-LTRF. The basic idea is that, instead of strictly following LTRF for internal nodes in each resource allocation phase, we can relax such a constraint by allowing the internal nodes on the path containing the starved user to have a higher priority to get resource allocated. Such a modification might make the resource allocation violate the LTRF among some sibling internal nodes, possibly making the difference of the total amount of allocated resources between sibling internal nodes temporally become larger. However, since LTRF considers the total amount of allocated resources over time, the difference is recorded and LTRF can minimize such a difference in later resource allocation according to its lending agreement mentioned in Section 5.1.

For example, in Figure 1(b), when the leaf node B is recognized to be a starvation user, the internal node G1 on its path \(G_0 \rightarrow G_1 \rightarrow B\) will be given a higher priority in resource allocation than \(G_2\), no matter the total amount of allocated resources of \(G_1\) is larger than \(G_2\) or not. Such allocation can address the starvation problem for B but enlarges the difference of the total amount of allocated resources between \(G_1\) (i.e., 211) and \(G_2\) (i.e., 110) at the moment. The difference is recorded and in later allocation, LTRF will help minimize it.

Algorithm 2 shows the pseudo-code for our starvation-aware hierarchical LTRF resource allocation. It consists of two phases, i.e., starvation detection phase and dynamic resource allocation phase.

The starvation detection is based on a time-out technique. We provide a waiting time threshold \(T_{wait}\). When a demand (i.e., with pending tasks) leaf node, \(i\), has the lowest total amount of allocated resources among all demanding users; \(2\) has waited for a longer time than \(T_{wait}\) without being allocated since its last time allocation, it is assumed to be a starvation node. In the dynamic resource allocation phase, if the starvation node is detected, the resources will be allocated to it. Otherwise, it keeps the same hierarchical collective resource allocation approach as the naive approach.

Algorithm 2 H-LTRF pseudo-code.

```plaintext
1: \( G = G_0, G_1, ..., G_i, ... \) \( \quad \) Group node. \( G_i \) denotes the \( i^{th} \) group. \( G_0 \)
   represents the whole cluster.
2: \( S(G_i) \) \( \quad \) the set of subgroups of \( G_i. NULL \) when \( G_i \) is a leaf group node (i.e., user node).
3: \( U(G_i) \) \( \quad \) the total amount of used resources for Group \( G_i \), initially 0.
4: \( \ell(G) \) \( \quad \) the set of leaf group nodes (i.e., user nodes).
5: \( G_i.wa i t \) \( \quad \) the waiting time for Group \( G_i \), initially 0.
6: \( T_{wait} \) \( \quad \) the maximum waiting time threshold.
7: \( w a i t : \) while there are idle resources do
8: \( \quad \) if \( \text{starvedNode} \neq \text{STARVATIONDETECTION}(\ell(G)) \) \( \quad \) \( \Rightarrow \) Startvation detection.
9: \( \quad \) if \( \text{starvedNode} \neq \text{NULL} \) then \( \Rightarrow \) Find starved node.
10: \( \quad \) Allocate resources to the leaf node \( \text{starvedNode} \).
11: \( \quad \) else \( \quad \) \( \Rightarrow \) No Starvation.
12: \( \quad \) \( \Rightarrow \) HIERARCHALLONGTERMALLOC(\( G_0 \)).
13: \( \quad \) function STARVATIONDETECTION(\( G' \) )
14: \( \quad \quad \) for \( G_i \) in \( G' \) do \( \Rightarrow \) Update waiting time.
15: \( \quad \quad \quad \) if \( G_i \) has no pending tasks then \( \Rightarrow \) Update waiting time.
16: \( \quad \quad \quad \quad G_i.wa i t = 0 \).
17: \( \quad \quad \) \( G_i \) = demanding group with lowest total used resource in \( G' \).
18: \( \quad \quad \) if \( G_i.wa i t > T_{wait} \) then \( \Rightarrow \) Update waiting time threshold.
19: \( \quad \quad \quad G_i.wa i t = 0 \).
20: \( \quad \quad \) return \( G_i \).
21: \( \quad \) else \( \Rightarrow \) return \( NULL \).
23: \( \quad \) function HIERARCHALLONGTERMALLOC(\( G_i \) )
24: \( \quad \quad \) if \( G_i \) is not a leaf group node (user) then \( \Rightarrow \) Update waiting time.
25: \( \quad \quad \quad G_j = \text{group node with lowest used total resource in } S(G_i) \text{ and pending tasks}. \quad \Rightarrow \) HIERARCHALLONGTERMALLOC(\( G_j \)).
26: \( \quad \quad \) else \( \Rightarrow \) \( G_i \) is a leaf group node (user).
27: \( \quad \quad \) Allocate resources to the leaf node \( G_i \) and set \( G_i.wa i t = 0 \).
28: \( \quad \) Update \( U(G_i) \) and set \( G_i.wa i t = 0 \).
```

By incorporating the timeout (i.e., \(T_{wait} \)) technique, we pro-
pose a starvation-aware H-LTRF that can address the starvation problem of the naive approach. Interestingly, we observe that the proposed starvation-aware H-LTRF is a generalization of the single-level LTRF and the naive approach, given by Theorem 1.

Theorem 1: When $T_{\text{wait}} = 0$, H-LTRF allocates resources the same as the single-level LTRF. In contrast, when $T_{\text{wait}} = +\infty$, H-LTRF is the same as the naive approach.

The proof Theorem 1 is given in Appendix A of the supplemental material. It implies that there is a tradeoff between the resource lending affinity and starvation minimization. That is, when T_{wait} is small, it favors the starvation minimization. In contrast, when T_{wait} is large, it is beneficial to the resource lending affinity.

The administrator can balance such a tradeoff by configuring the T_{wait} flexibly. Lastly, the guidance on how to configure T_{wait} is given in Section 7.6.

Let’s revisit the previous example of Figure 2, which shows that under the naive H-LTRF policy, B is starved for at least 8 time units (from 27^{th} to 35^{th}) since its sibling A consumes too many resources in previous time. In contrast, with starvation-aware H-LTRF, the resulting allocation is shown in Figure 3, where $T_{\text{wait}} = 1$ time unit. From time 27 onwards, it enables B (with the lowest total amount of allocated resources) not to be starved by having one of its tasks scheduled by 1 time unit since its last time allocation.

Moreover, we demonstrate that H-LTRF can meet all the properties in Section 3. The detailed proofs are given in Appendix C of the supplemental material. Finally, Table 2 summarizes the properties that are satisfied by MLRF, LTRF, and H-LTRF, respectively. We can see that MLRF is not suitable for cloud computing system due to its lack of support for three important desired properties. In contrast, LTRF and H-LTRF, are suitable for cloud computing system.

6 LTYARN: A LONG-TERM YARN FAIR SCHEDULER

We have implemented the fair resource allocations in YARN by proposing a new scheduler called LTYARN.

6.1 Long-Term Max-Min Fairness Model

This subsection proposes long-term max-min fairness model for LTYARN. YARN is a hierarchical tree structure of multi-level fairness. The following part considers the bottom-level (i.e., application-level). The mechanism can be easily extended to upper queue-level.

Let $\Lambda = \{A_1, A_2, A_3, \ldots\}$ denote the set of submitted applications, and $\hat{\Lambda}$ be the set of its active applications (the ‘active’ means there are pending or running tasks available). Let $n_i^p(t)$ denote the number of pending (i.e., runnable) tasks for the application A_i at time t. Let ω_i be the shared weight for the i^{th} application. Based on the weighted max-min fairness strategy and Formula (1), the application A_i to be chosen at time t for fair resource allocation should satisfy the following condition,

$$f_i(t) = \min_{A_k \in \hat{\Lambda}} \frac{f_k(t)}{\omega_k} \left(n_k^p(t) > 0 \right).$$

6.2 Design and Implementation of LTYARN

Figure 4 overviews the design and implementation of LTYARN. It consists of three key components: Quantum Updater (QU), Resource Controller (RC), and Resource Allocator (RA). QU is responsible for updating the time quantum for each queue dynamically, based on running and completed tasks, to solve the unknown execution time issue. RC manages the allocated resources for each application/queue and computes the accumulated resources periodically. RA performs the resource allocation based on the accumulated resources of each application/queue.

6.2.1 Quantum Updater (QU)

Our long-term max-min fairness policy of LTYARN is based on the accumulated resources. When estimating the accumulated amount of resource for a task, we need to know the demand of its requested resources and the execution time it takes.

The resource demand can be obtained from the user request when the task is submitted to YARN. However, for online applications, the task execution time is generally unknown in advance. To address this problem, we propose a Time-Quantum-based Approach, which is an approximation method. It gives a concept of assumed execution time denoted as

<table>
<thead>
<tr>
<th>Property</th>
<th>MLRF</th>
<th>LTRF</th>
<th>H-LTRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharing Incentive</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cost-Efficient Workload Incentive</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>resource-as-you-contributed Fairness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Strategy-Proofness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pareto Efficiency</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

TABLE 2: List of properties for MLRF, LTRF and H-LTRF.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2531698, IEEE Transactions on Services Computing

Q, to represent the prior unknown real execution time. It is initialized with a time quantum threshold and can be adjusted dynamically to make it close to the real execution time based on the completed tasks. Specifically, our approach works as follows. We first initialize the assumed execution time to be zero for any pending task. When a task starts running, we give a time quantum threshold for its assumed execution time. For each running task, when its running time exceeds the assumed execution time, the assumed execution time is updated to the running time. In contrast, for any finished task, its assumed execution time is updated to its running time, no matter it is larger or smaller than the time threshold.

However, in practice, different applications often have different task execution time. Thus, a single static value of Q cannot meet the suitability requirements of multiple jobs (applications) at the same time. In addition, due to the possibility of varied types of applications in different queues for YARN in practice, ensuring that each queue owns a suitable Q for its own applications is necessary so that they do not interfere with each other.

With the above concerns, we propose an adaptive task quantum policy, implemented in Quantum Updater. It is a multi-level self-tuning approach based on the customized structure of YARN's resource organization, as shown in Figure 5. The up-to-bottom data flow is a quantum value assignment process. It works when a new element (e.g., queue or application) is added. In contrast, the bottom-to-up data flow is a self-tuning procedure, which refreshes periodically by a fixed time interval (e.g. 1 second).

Initially, the system administrator provides a threshold value for root-level quantum Q_0. When a new application is submitted to the system, it will perform up-to-bottom initialization process. First, it will check whether its parent queue is new one or not (Arrow (1) in Figure 5). If yes, it will assign its parent-queue quantum with root-queue quantum, e.g., $Q_{1,1} \leftarrow Q_0$. Next, it checks its sub-queues (e.g., leaf-queue) (Arrow (2) in Figure 5). If it is a new one, it will assign its sub-queue quantum with its parent-queue quantum, e.g., $Q_{2,1} \leftarrow Q_{1,1}$. Lastly, it initializes its application quantum with its leaf-queue quantum, e.g., $Q_{3,1} \leftarrow Q_{2,1}$ (Arrow (3) in Figure 5).

In our implementation, Quantum Updater checks the system periodically for new finished tasks. When there is a map/reduce task finished, the bottom-to-up self-adjustment process begins to work automatically. First, it will update its application quantum with its average task completion time (Arrow (4) in Figure 5). Next, it updates its leaf-queue quantum with its average application quantum (Arrow (5) in Figure 5). Similarly, it updates its parent-queue quantum using the average value of its leaf-queue quantum (Arrow (6) in Figure 5). Finally, the root-queue quantum is updated with the average value of parent-queue quantum (Arrow (7) in Figure 5).

6.2.2 Resource Controller (RC)

Resource Controller (RC) is the main component of LTYARN. Its principle responsibility is to manage and update the accumulated resources for each queue. It tracks the allocated resource (e.g., container in YARN) and the execution time for each task. Based on this information, it performs the resource updating work periodically (e.g., 1 second).

Time Window-based Support. To make it flexible, instead of keeping the long-term resource fairness all the time since the system starts, our LTYARN supports the long-term fairness within a period of time (e.g., 1 hour). That is, we divide the whole time into a set of time windows and ensure the fairness within the window (Intra-window allocation). When a new window starts, the previous historical allocation information is dropped and it performs the long-term fair resource allocation from the beginning (Inter-window allocation). For simplicity, we use round to denote time window below.

Resource Tracking and Estimation. It works based on the long-term max-min fairness model in Section 6.1. Each time, RC first estimates the assumed execution time for each running/completed task with the updated quantum value from QU. Next, it computes and updates the accumulated resource for each application/queue.

6.2.3 Resource Allocator (RA)

Resource Allocator (RA) locates at each queue of different levels, as shown in Figure 5. It is triggered whenever there are pending tasks and idle resources. RA can now support FIFO, memoryless max-min fairness and long-term max-min fairness for each queue. Users can choose either of them accordingly. For long-term max-min fairness, it performs fair resource allocation for each application/queue with the provided resource information from RC, based on Formula (6). We provide two important configuration arguments for each queue, e.g., time quantum Q and round length L in the default configuration file, to meet different requirements for different queues. Moreover, we also support minimum (maximum) resource share for queues under long-term max-min fairness.

7 Evaluation

We ran our experiments in a local cloud environment, which is established in a cluster consisting of 10 compute nodes, each with two Intel X5675 CPUs (6 CPU cores per CPU with 3.07 GHz), 24GB DDR3 memory. We emulate the t2.medium instances of Amazon EC2 by configuring <2 cores, 4 GB>
per VM and thereby create 6 VMs per node. The Hadoop-2.2.0 is chosen in our experiment. We configure 1 instance as master, and the remaining 59 instances as slaves.

Our evaluation methodology is as follows. We first construct a single-level hierarchy for LTYARN with the four macro-workloads below. We compare LTYARN with the default Hadoop Fair Scheduler (HFS). Second, we construct a two-level hierarchy for LTYARN by grouping four macro-workloads into groups to assess our design on hierarchical resource allocations.

7.1 Macro-benchmarks

To evaluate our long-term fair scheduler LTYARN for YARN, we ran a macro-benchmark consisting of four different workloads:

- A MapReduce instance with a mix of small and large jobs based on the workload at the Facebook.
- A MapReduce instance running a set of large-size batch jobs generated with Purdue MapReduce Benchmarks Suite [33].

7.2 Macro-Workloads

<table>
<thead>
<tr>
<th>Bin</th>
<th>Job Type</th>
<th># Maps</th>
<th># Reduces</th>
<th># Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rankings selection</td>
<td>1</td>
<td>NA</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>grep search</td>
<td>2</td>
<td>NA</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>uservisits aggregation</td>
<td>10</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>rankings selection</td>
<td>5</td>
<td>NA</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>uservisits aggregation</td>
<td>100</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>rankings selection</td>
<td>200</td>
<td>NA</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>grep search</td>
<td>400</td>
<td>NA</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>rankings-uservisits join</td>
<td>400</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>grep search</td>
<td>800</td>
<td>60</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE 3: Job types and sizes for each bin in our synthetic Facebook workloads.

Synthetic Facebook Workload. We synthesize our Facebook workload based on the distribution of jobs sizes and inter-arrival time at Facebook in Oct. 2009 provided by Zaharia et. al. [20]. The workload consists of 100 jobs. We categorize them into 9 bins of job types and sizes, as listed in Table 3. It is a mix of large number of small-sized jobs (1 ~ 15 tasks) and small number of large-sized jobs (e.g., 800 tasks\(^3\)). The job submission time is derived from one of SWIM’s Facebook trace files (e.g., FB-2009_samples_24_times_1hr_1.tsv) [34]. The jobs are from Hive benchmark [35], containing four types of applications, i.e., rankings selection, grep selection (seach), uservisits aggregation and rankings-uservisits join.

Purdue Workload. We select five benchmarks (e.g., WordCount, TeraSort, Grep, InvertedIndex, HistogramMovuces) randomly from Purdue MapReduce Benchmarks Suite [33]. We use 40G wikipedia data [36] for WordCount, InvertedIndex and Grep, 40G generated data for TeraSort and HistogramMovuces with their provided tools. To emulate a series of regular job submissions in a data warehouse, we submit these five jobs sequentially at a fixed interval of 3 mins to the system.

TPC-H. To emulate continuous analytic query, such as analysis of users’ behavior logs, we ran TPC-H benchmark queries on hive [14]. 40GB data are generated with provided data tools. Four representative queries Q1, Q9, Q12, Q17 are chosen, each of which we create five instances. We write a script to launch each one after the previous one finished in a round robin fashion.

Spark. Latest version of Spark has supported its job to run on the YARN system. We consider two CPU-intensive machine learning algorithms, namely, kmeans and alternating least squares (ALS) with provided example benchmarks. We ran 10 instances of each algorithm, which are launched by a script that waits 2 minutes after each job completed to submit the next.

We configure a single-level hierarchy with the four workloads, as shown in Figure 6. Each leaf queue corresponding to a workload. We use it for the following sections, i.e., Section 7.3, Section 7.4, Section 7.5, and Appendix D of the supplemental material. Besides, the hierarchy of more levels is given and used in Section 7.6.

Fig. 6: Single-level hierarchical for LTYARN. Four different leaf queues are configured, i.e., Facebook, Purdue, Spark, TPC-H, corresponding to each workload, respectively.

7.3 LTYARN Resource Allocation Flow

To understand the dynamic history-based resource allocation mechanism of LTYARN, we sample the resource demands, currently allocated resources and accumulated resources for four workloads over a short period of 0 ~ 260 seconds, as illustrated in Figure 7. Figure 7(a) and 7(b) show the normalized results of the current resource demand and currently allocated resources for each workload with respect to its current share. Figure 7(c) presents the normalized accumulated resources for four workloads with respect to the system capacity.

Figure 7(a) shows that different workloads have different resource demands over time. At beginning, Purdue, Spark and TPC-H have an overloaded demand period (e.g., Purdue: 24 ~ 131, Spark: 28 ~ 118, TPC-H: 28 ~ 146). Figure 7(b) shows the allocation details for each workload over time. We can see that, during the common overloaded period of 28 ~ 118, the curves for Purdue and Spark are fluctuated, indicating that LTYARN is dynamically adjusting the amount of resource allocation to each workload, instead of simply assigning each workload the same amount of resources like MLRF. Through dynamic adjusting, the accumulated resources for the three workloads are balanced (i.e., the curve is close to each other) during the period 80 ~ 118, as shown in Figure 7(c). However, for Facebook workload, its overloaded period occurs from 204 ~ 260. During this period, the Purdue workload is also
overloaded, as shown in Figure 7(a). To achieve the accumulated resource fairness, LTYARN allocated a large amount of resource to it (e.g., 3.85/4.0 = 96.25% at point 222) shown in Figure 7(b), to make it catch up with others. We can see the accumulated resource results in Figure 7(c) that, during 204–260, there is a significant increment for Facebook workload, whereas other workloads increase slightly.

7.4 Macrobenchmark Fairness Results

In Section 4.2, we have shown that a good sharing policy should be able to satisfy two key points: 1) can minimize the sharing loss (i.e., SLA guarantee) to make it close or equal to zero; 2) can maximize the sharing benefit as much as possible (i.e., Sharing incentive). This section makes a comparison between HFS and LTYARN on these two points.

We show the compared fairness results between HFS and LTYARN for four workloads over time in Figure 8. All results are relative to the static partition case (without sharing) with fairness degree of one and sharing benefit/loss degrees of zero. Figure 8(a) and 8(c) present the sharing benefit/loss degrees based on Formula (4) and (5), respectively, for HFS and LTYARN. Figure 8(b) and 8(d) show the detailed fairness degree for each queue (workload) over time. We have the following observations:

First, the sharing policies of both HFS and LTYARN can bring sharing benefits for queues (workloads). For example, both Facebook and Purdue workloads, illustrated in Figure 8(b) and 8(d) obtain benefits under the shared scenario. This is due to the sharing incentive property, i.e., each queue has an opportunity to consume more resources than her share at a time, better off running at most all of her shared partition in a non-shared partition system.

Second, it can also have the sharing loss problem easily for some queues if without a good sharing policy, i.e., whose total resources are worse than that in the non-shared case. In the shared computing system with SLA requirements, this is a very serious problem and thereby we should minimize the sharing loss as much as possible. The graph in Figure 8(a) and (c) show that, LTYARN has a much better result than HFS. Specifically, Figure 8(a) indicates that the sharing loss problem for HFS is constantly available until all the workloads complete (e.g., ≈ -0.5 on average), contributed primarily by Spark and TPC-H workloads given by Figure 8(b). In contrast, there is no more sharing loss problem after 650 seconds for LTYARN, i.e., all workloads get sharing benefits after that. The explanation is that, for MLRF, it does not consider historical resource allocation. Due to the varied demands for each workload over time, it easily occurs two extreme cases: 1) some workloads get much more resources over time (e.g., Facebook and Purdue workloads in Figure 8(b)); 2) some workloads obtain much less resources that without sharing over time (e.g., Spark and TPC-H workloads in Figure 8(b)). In contrast, LTYARN is a history-based fairness resource allocation policy. It can dynamically adjust the allocation of resources to each queue in terms of their historical consumption so that each queue can obtain much close amount of total resources over time. Its lending agreement can avoid two extreme cases existing in HFS.

Finally, regarding the sharing loss problem at the early stage (e.g., $0 \sim 650$ seconds) of LTYARN in Figure 8(c), it is mainly due to the unavoidable waiting allocation problem at
starting stage: a first coming and running workload possess all resources and leads late arriving workloads need to wait for a while until some tasks complete and release resources (e.g., it is obvious in 0 – 226 seconds in Figure 8(c)). The problem does also exist in HFS. But LTYARN can smooth this problem until it disappear over time via lending agreement, while HFS cannot.

7.5 Macrobenchmark Performance Results

![Fig. 9: The normalized performance results (e.g., speedup) for Static Partitioning, HFS and LTYARN, with respect to Static Partitioning.](image)

Figure 9 presents the performance results (i.e., speedup) for four workloads under Static Partitioning, HFS and LTYARN, respectively. All results are normalized with respect to Static Partitioning. We see that, 1). the shared cases (i.e., HFS and LTYARN) can possibly achieve better performance than the non-shared case (i.e., Static Partitioning), or at least as fast in the shared system as they do in their static partitioning system. For example, for Facebook and Purdue workloads, both HFS and LTYARN have much better performance results (e.g., 14% - 19% improvement for HFS, and 10% - 23% for LTYARN) than exclusively using a static partitioning system. The finding is consistent with previous works such as Mesos [10]. The performance gain is mainly due to the resource preemption of unneeded resources from other queues in a shared system. The statement can be validated by reviewing our fairness results in Figure 8(b) and 8(d) in Section 7.4. We can note that, the fairness degrees for both Facebook and Purdue workloads are above one (i.e., get sharing benefit) during the most of time, except at the beginning stage. For Spark and TPC-H workloads, HFS and LTYARN can be at least as fast as static partitioning. 2). There is no conclusive result regarding which one is absolutely better than the other between HFS and LTYARN. For example, HFS is better than LTYARN for Facebook by about 7% and Spark by about 2%. However, LTYARN outperforms HFS for Purdue workload by about 8% and TPC-H by about 10%.

7.6 Hierarchical Resource Allocation Evaluation

In this section, we evaluate the hierarchical resource allocation primarily from two points. First, we show that the naive approach can cause the starvation problem in resource allocation. Second, we demonstrate that the starvation problem can be addressed with proposed (starvation-aware) H-LTRF in Section 5.2.2.

We start by establishing a multi-level queue structure with the aforementioned four workloads in YARN, based on Figure 1(b) in Section 5.2. The resulting hierarchical structure is illustrated in Figure 10. We create two queues, namely, Group1 and Group2 with equal share of the whole system (i.e., Root node). For Group1, it has two children, i.e., Facebook and TPC-H. In contrast, there are two sub-queues, namely, Purdue and Spark under Group2. We assume that all leaf nodes under the same parent are with equal share. Moreover, to show the starvation phenomenon (e.g., for TPC-H workload) in hierarchical resource allocation, we submit the Facebook workload first, and after 15 minutes we then submit other three workloads (i.e., Purdue, Spark, TPC-H) simultaneously.

Figure 11(a) and 11(b) present the memory resource allocation results for queues at different levels under the naive approach. At the first time period of 900 seconds, only Facebook workload is running, which contributes to Group1 of the accumulated resource. After 900th second, other three workloads are submitted. Based on the naive approach, it allocates all idle resources to Group2 so that the accumulated resource of Group2 can catch up with that of Group1 quickly. We can witness from Figure 11(a) that there is no resource allocation for Group1 from the 900th second to 1580th second (i.e., ~11 minutes). Figure 11(b) gives the detailed resource allocation for four workloads over time. We can see that, because of recursively collective resource allocation, TPC-H workload has been starved for at least 11 minutes without being allocated resources since its submission at the 900th second. This is due to the accumulated resource consumption of Group1 contributed by its sibling Facebook workload at the starting period of 900 seconds.

Figure 11(c) presents the comparison results of resource allocation for TPC-H under the naive approach and (starvation-aware) H-LTRF of different timeout T_{wait}. We have the following observations:

First, our H-LTRF can alleviate the starvation problem in recursively collective resource allocation significantly. In comparison to the naive approach under which the TPC-H workload is starved for at least 11 minutes without being allocated resources since its submission, our proposed H-LTRF can alleviate this problem by ensuring that TPC-H workload is not starved for T_{wait} period of time since its last time resource allocation. For example, when $T_{wait} = 10$ seconds, we mean that TPC-H workload will not be starved for 10 seconds since its last time resource allocation.

Second, H-LTRF is able to allow users to balance the tradeoff between the resource lending affinity and starvation reduction in hierarchical resource allocation by setting the argument T_{wait} flexibly according to their needs. We can observe in Figure 11(c) that the TPC-H workload is actively
Algorithm 1: H-LTRF

1. Initialize T_{task}, T_{avg}, and N_{task}
2. For each new incoming request:
 a. Calculate T_{wait} using Equation (12)
 b. Schedule tasks according to T_{wait}
3. Until all tasks are completed

(a) The resource allocation for two groups over time under the naïve approach.
(b) The detailed resource allocation for four workloads over time under the naïve approach.
(c) The comparison results of resource allocation for the TPC-H workload under H-LTRF of different timeout T_{wait}.

Fig. 11: The comparison of hierarchical resource allocation under naïve approach and (starvation-aware) H-LTRF subject to Figure 10. To show the starvation problem (e.g., for TPC-H workload), we perform the experiment by submitting Facebook workload first. After 15 minutes, we submit other three workloads (i.e., Purdue, Spark and TPC-H) simultaneously. Figure 11(a) and 11(b) shows that TPC-H workload (i.e., the sibling of Facebook workload) has been starved for at least 680 seconds (i.e., \approx 11 minutes) without being allocated resources since its submission at the 900th second.

allocated resources since its submission at 900th second when $T_{wait} = 0$ (i.e., no starvation problem here). When $T_{wait} = 10$ seconds, there are $2 \sim 10$ actively running tasks of TPC-H at during its starvation period (from 900th to 1580th seconds). In contrast, there are 1 \sim 4 actively running tasks at that period for large value of $T_{wait} = 80$.

By far, one remaining issue for H-LTRF is about T_{wait} configuration. We see in Figure 11(c) that its value can have a significant impact on the average number of actively running tasks for those starved workloads during their starvation periods. To understand it theoretically, for simplicity, consider a workload whose tasks are of the same duration T_{task}. During the starvation period, H-LTRF will schedule its tasks every T_{wait} seconds, then it holds for the number of active running tasks $N_{task} = T_{task}/T_{wait}$, assuming that there are enough resources. In practice, users could configure T_{wait} based on the average task duration T_{avg}, i.e.,

$$T_{wait} = \frac{T_{avg}}{N_{task}}.$$

(12)

Figure 12(a) presents the task execution time for 1000 tasks of TPC-H workload, whose average execution time is 23.6 seconds. Figure 12(b) shows the corresponding number of actively running tasks for different values of T_{wait} over time. Based on Formula (12), we see that there are $\frac{23.6}{6} \approx 12$ actively running tasks on average when $T_{wait} = 2$. Similarly, when $T_{wait} = 4$ and 10, there are on average $\frac{23.6}{4} \approx 6$ and $\frac{23.6}{10} \approx 3$ actively running tasks, respectively.

Figure 12: The impact of T_{wait} on the number of actively running tasks for TPC-H workload.

8 **Related Work**

We review the literature works that are close to us from the following three perspectives:

- **Data-Intensive Computing in the Cloud**
 The study on cloud-based data-intensive computing has been a hot research area in recent years. There have been many studies on the performance optimization for diverse workloads and data (e.g., [19], [17], [18], [31], [49]) under various data-intensive computing frameworks (e.g., MapReduce [2], Spark [13], HIVE [25], Storm [12]). Considering that the cloud resources are charged on the basis of pay-as-you-use model, a number of studies become available on the monetary cost minimization (e.g., [9], [4]). Moreover, there are some other interesting works focusing on data privacy [39] and reliability [11]. In contrast, this paper considers the fairness resource allocation issue in the cloud, where YARN is specifically considered. We show that there are three problems for existing fair scheduler of YARN, making it not suitable for cloud computing. To address it, we have proposed a new scheduler called LYTARN.

- **Fairness Definitions, Policies and Algorithms**
 Fairness has been studied extensively with various ways [26], [27], [29], [30], [32]. The fairness they defined are mainly based on the "performance" metrics such as start time, response time, wait time and slowdown. For example, Zhao et al. [30] and Arabnejad et al. [32] consider the fairness for multiple workflows. They define fairness on the basis of slowdown that each workflow would experience, where the slowdown refers to the difference in the expected execution time for the same workflow between when scheduled together with other workflows and when scheduled alone. However, we show that they are no longer suitable for cloud computing systems due to the different concerns and meanings of fairness preferred in cloud computing systems as follows:

 First, the cloud computing system is a service-oriented platform with resource guarantee. That is, from service providers’ perspective (e.g., Amazon, supercomputer operator), they only need to guarantee the amount of resources allocated to each user over a period of time. In comparison, the performance metrics for user’s applications are not the main concerns for providers. Our proposed LTRF and its extension H-LTRF are
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2531698, IEEE Transactions on Services Computing

LTYARN developed fair queueing [38]) on resource allocation are round-robin, proportional resource sharing [37], and weighted fair queueing [38]) on resource allocation are memoryless, i.e., instant fairness of one dimension. Our LTRF is designed to be a two-dimension fair policy with the historical information considered.

- **Max-Min Fairness and Supporting Systems**

In the literature, there are many work that apply max-min fairness to a variety of single-typed resources, including CPU [21], [37], memory [16], [37], network bandwidth [42], [44], and storage [45]. For cloud computing, the max-min fairness has been widely used by many data-intensive systems, such as Hadoop [15], YARN [3], Mesos [10], Choosy [8], and Pisces [45].

Besides, there are lots of work extending the max-min fairness for multi-resource allocation. Dominant Resource Fairness (DRF) [23] is the first work in the literature for multi-resource allocation. It achieves the fairness by equalizing the dominant shares (i.e., the highest share of any typed resource allocated) across all users. DRF has been implemented in many current datacenter frameworks such as YARN [3] and Mesos [10]. After that, there have been lots of extension and generalization for DRF, including [41], [28], [50].

Despite the various efforts, all of these fair policies and their implementation on existing systems above are indeed memoryless (i.e., allocating resources fairly at instant time), belonging to MLRF. We show that there are three problems for cloud computing system regarding MLRF, i.e., cost-inefficient workload submission problem, strategy-proofness problem and resource-as-you-contributed unfairness problem. This paper goes beyond our previous work [40], [51] in the following aspects: (I). We provide more details of LTRF for single-resource allocation; (II). We extend LTRF for hierarchical resource allocation. (III). We perform more extensive experiments in our evaluation.

9 **Conclusion**

This paper studies the resource allocation fairness for YARN in cloud environment. We find that, the existing max-min fair policy used in YARN, is not suitable in cloud computing system. We show that this is because of its memoryless resource allocation manner that can cause three serious problems, i.e., cost-inefficient workload submission problem, strategy-proofness problem and resource-as-you-contributed unfairness problem. To address these problems for YARN, we propose LTRF and H-LTRF for single-level and hierarchical resource allocation, respectively. We demonstrate that they are suitable for cloud computing system. Finally, we developed LTYARN, a long-term YARN fair scheduler for YARN and our experimental results validate the effectiveness of our solutions. We have made LTYARN open source at http://sourceforge.net/projects/lyarn/.

References

Shanjiang Tang received the PhD degree from School of Computer Engineering, Nanyang Technological University, Singapore in 2015, and the MS and BS degrees from Tianjin University (TJU), China, in Jan 2011 and July 2008, respectively. He is currently an assistant professor in School of Computer Science and Technology, Tianjin University, China. His research interests include parallel computing, cloud computing, big data analysis, and computational biology.

Bu-Sung Lee received the B.Sc. (Hons.) and Ph.D. degrees from the Electrical and Electronics Department, Loughborough University, Technology, U.K., in 1982 and 1987, respectively. He is currently Associate Professor with the School of Computer Engineering, Nanyang Technological University, Singapore. His research interests include computer networks protocols, distributed computing, network management and Grid/Cloud computing.